找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: centipede
31#
發(fā)表于 2025-3-27 00:21:20 | 只看該作者
General Introduction by Guerino Mazzolae data and provides ready-to-use estimation results. Comprehensive experiments demonstrate our state-of-the-art pose estimation performance on Human3.6M and MPI-INF-3DHP datasets. Further experiments on in-the-wild datasets also illustrate the capability to access more data to boost our model. Code will be available at ..
32#
發(fā)表于 2025-3-27 02:03:58 | 只看該作者
Clinical Assessment of Mucociliary Disorders a variational autoencoder, and leverage a diffusion model to enhance expressivity. Additionally, we instruct the model to preserve 3D structural fidelity by devising a range-guided discriminator. Experimental results on KITTI-360 and nuScenes datasets demonstrate both the robust expressiveness and fast speed of our LiDAR point cloud generation.
33#
發(fā)表于 2025-3-27 06:54:46 | 只看該作者
Models, Statistical Inference and Learningting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
34#
發(fā)表于 2025-3-27 12:44:42 | 只看該作者
,ComFusion: Enhancing Personalized Generation by?Instance-Scene Compositing and?Fusion,s coarse-generated images to ensure alignment with both the instance images and scene texts, thereby achieving a delicate balance between capturing the subject’s essence and maintaining scene fidelity. Extensive evaluations of ComFusion against various baselines in T2I personalization have demonstrated its qualitative and quantitative superiority.
35#
發(fā)表于 2025-3-27 15:03:45 | 只看該作者
,Mask as?Supervision: Leveraging Unified Mask Information for?Unsupervised 3D Pose Estimation,e data and provides ready-to-use estimation results. Comprehensive experiments demonstrate our state-of-the-art pose estimation performance on Human3.6M and MPI-INF-3DHP datasets. Further experiments on in-the-wild datasets also illustrate the capability to access more data to boost our model. Code will be available at ..
36#
發(fā)表于 2025-3-27 19:44:24 | 只看該作者
37#
發(fā)表于 2025-3-27 23:49:32 | 只看該作者
,WPS-SAM: Towards Weakly-Supervised Part Segmentation with?Foundation Models,ting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
38#
發(fā)表于 2025-3-28 03:03:07 | 只看該作者
39#
發(fā)表于 2025-3-28 07:40:34 | 只看該作者
,MoVideo: Motion-Aware Video Generation with?Diffusion Model, space by another spatio-temporal diffusion model under the guidance of depth, optical flow-based warped latent video and the calculated occlusion mask. Lastly, we use optical flows again to align and refine different frames for better video decoding from the latent space to the pixel space. In expe
40#
發(fā)表于 2025-3-28 12:08:07 | 只看該作者
,SHERL: Synthesizing High Accuracy and?Efficient Memory for?Resource-Limited Transfer Learning,esses. In the early route, intermediate outputs are consolidated via an anti-redundancy operation, enhancing their compatibility for subsequent interactions; thereby in the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead and regulate these fai
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 额敏县| 米脂县| 屯留县| 万荣县| 上高县| 青岛市| 祁连县| 项城市| 无为县| 中卫市| 安远县| 黄大仙区| 宁武县| 浏阳市| 无极县| 喜德县| 霞浦县| 子洲县| 拉萨市| 寿阳县| 厦门市| 东源县| 宝兴县| 饶河县| 通山县| 东方市| 宁乡县| 沙坪坝区| 嘉义县| 晋州市| 和林格尔县| 肃南| 西宁市| 营山县| 沅陵县| 内丘县| 曲周县| 兴隆县| 佛冈县| 濮阳县|