找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Coolidge
41#
發(fā)表于 2025-3-28 15:47:01 | 只看該作者
,DualBEV: Unifying Dual View Transformation with?Probabilistic Correspondences,orrespondences in one stage, DualBEV effectively bridges the gap between these strategies, harnessing their individual strengths. Our method achieves state-of-the-art performance without Transformer, delivering comparable efficiency to the LSS approach, with 55.2% mAP and 63.4% NDS on the nuScenes test set. Code is available at ..
42#
發(fā)表于 2025-3-28 19:07:35 | 只看該作者
Conference proceedings 2025t learning, Object recognition, Image classification, Image processing, Object detection, Semantic segmentation, Human pose estimation, 3D reconstruction, Stereo vision, Computational photography, Neural networks, Image coding, Image reconstruction and Motion estimation..
43#
發(fā)表于 2025-3-28 23:34:41 | 只看該作者
,OpenSight: A Simple Open-Vocabulary Framework?for?LiDAR-Based?Object?Detection,ectly transferring existing 2D open-vocabulary models with some known LiDAR classes for open-vocabulary ability, however, tends to suffer from over-fitting problems: The obtained model will detect the known objects, even presented with a novel category. In this paper, we propose OpenSight, a more ad
44#
發(fā)表于 2025-3-29 06:47:21 | 只看該作者
45#
發(fā)表于 2025-3-29 07:38:58 | 只看該作者
46#
發(fā)表于 2025-3-29 12:29:53 | 只看該作者
,DailyDVS-200: A Comprehensive Benchmark Dataset for?Event-Based Action Recognition,range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the dev
47#
發(fā)表于 2025-3-29 18:44:41 | 只看該作者
,On the?Topology Awareness and?Generalization Performance of?Graph Neural Networks,nant tool for learning representations of graph-structured data. A key feature of GNNs is their use of graph structures as input, enabling them to exploit the graphs’ inherent topological properties—known as the topology awareness of GNNs. Despite the empirical successes of GNNs, the influence of to
48#
發(fā)表于 2025-3-29 21:07:21 | 只看該作者
,T-CorresNet: Template Guided 3D Point Cloud Completion with?Correspondence Pooling Query Generations often suffer from incompleteness due to limited perspectives, scanner resolution and occlusion. Therefore the prediction of missing parts performs a crucial task. In this paper, we propose a novel method for point cloud completion. We utilize a spherical template to guide the generation of the coa
49#
發(fā)表于 2025-3-30 03:06:13 | 只看該作者
50#
發(fā)表于 2025-3-30 06:58:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜兰县| 通江县| 澄城县| 和顺县| 卫辉市| 扶沟县| 朔州市| 河间市| 隆安县| 岫岩| 潮州市| 略阳县| 获嘉县| 习水县| 清徐县| 连江县| 东兴市| 松潘县| 惠水县| 元阳县| 剑川县| 双柏县| 蓬溪县| 射洪县| 罗源县| 康平县| 枣强县| 安新县| 墨竹工卡县| 南投县| 洛扎县| 舞阳县| 周至县| 南汇区| 湟中县| 乐安县| 边坝县| 柘荣县| 屏边| 太仓市| 咸阳市|