找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: malignant
51#
發(fā)表于 2025-3-30 09:24:47 | 只看該作者
C. Toker,B. Uzun,F. O. Ceylan,C. Iktennabled through a bidirectional cross-attention mechanism. The approach offers multiple advantages - (a) easy to implement on standard ML accelerators (GPUs/TPUs) via standard high-level operators, (b) applicable to standard ViT and its variants, thus generalizes to various tasks, (c) can handle diff
52#
發(fā)表于 2025-3-30 13:40:48 | 只看該作者
,Learning Pseudo 3D Guidance for?View-Consistent Texturing with?2D Diffusion, on learned .seudo .D .uidance. The key idea of P3G is to first learn a coarse but consistent texture, to serve as a global semantics guidance for encouraging the consistency between images generated on different views. To this end, we incorporate pre-trained text-to-image diffusion models and multi
53#
發(fā)表于 2025-3-30 17:41:31 | 只看該作者
54#
發(fā)表于 2025-3-30 22:06:58 | 只看該作者
,SparseRadNet: Sparse Perception Neural Network on?Subsampled Radar Data,o combine features from both branches. Experiments on the RADIal dataset show that our SparseRadNet exceeds state-of-the-art (SOTA) performance in object detection and achieves close to SOTA accuracy in freespace segmentation, meanwhile using sparse subsampled input data.
55#
發(fā)表于 2025-3-31 04:19:30 | 只看該作者
56#
發(fā)表于 2025-3-31 08:56:53 | 只看該作者
57#
發(fā)表于 2025-3-31 13:00:09 | 只看該作者
,Explain via?Any Concept: Concept Bottleneck Model with?Open Vocabulary Concepts,ifier on the downstream dataset; (3) Reconstructing the trained classification head via any set of user-desired textual concepts encoded by CLIP’s text encoder. To reveal potentially missing concepts from users, we further propose to iteratively find the closest concept embedding to the residual par
58#
發(fā)表于 2025-3-31 15:31:35 | 只看該作者
59#
發(fā)表于 2025-3-31 19:57:09 | 只看該作者
,Missing Modality Prediction for?Unpaired Multimodal Learning via?Joint Embedding of?Unimodal Modelscts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
60#
發(fā)表于 2025-4-1 00:13:11 | 只看該作者
,Improving Diffusion Models for?Authentic Virtual Try-on in?the?Wild, layer. In addition, we provide detailed textual prompts for both garment and person images to enhance the authenticity of the generated visuals. Finally, we present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity. Our experimental
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巧家县| 邵阳市| 沙洋县| 吉隆县| 西平县| 紫金县| 巴林左旗| 南丰县| 平顺县| 深圳市| 西城区| 民权县| 彰化市| 南岸区| 西青区| 金华市| 潼南县| 定襄县| 黄山市| 乐陵市| 靖西县| 阿拉尔市| 德保县| 剑川县| 安泽县| 平泉县| 诏安县| 信丰县| 奉新县| 济宁市| 雷州市| 谷城县| 辽阳市| 永安市| 郎溪县| 杭州市| 宝山区| 锡林郭勒盟| 石狮市| 平谷区| 额济纳旗|