找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 8th International Co Harkeerat Kaur,Vinit Jakhetiya,Sanjeev Kumar Conference proceedings 2024 The Edi

[復(fù)制鏈接]
樓主: T-Lymphocyte
51#
發(fā)表于 2025-3-30 09:58:21 | 只看該作者
Damage Segmentation and Restoration of Ancient Wall Paintings for Preserving Cultural Heritage,rating due to the passage of time, environmental factors, and human actions. Preserving and Restoring these delicate artworks is crucial. One approach to aid their digital restoration is leveraging advanced technologies like deep learning. This study applies image segmentation and restoration techni
52#
發(fā)表于 2025-3-30 13:21:38 | 只看該作者
53#
發(fā)表于 2025-3-30 17:39:07 | 只看該作者
,Fusion of?Handcrafted Features and?Deep Features to?Detect COVID-19,ures and handcrafted features to provide a unique method for COVID-19 identification using chest X-rays. In order to extract high-level features from the chest X-ray pictures, we first use a convolutional neural network (CNN) that has already been trained to take advantage of deep learning. The disc
54#
發(fā)表于 2025-3-30 23:49:04 | 只看該作者
,An Improved AttnGAN Model for?Text-to-Image Synthesis, text sequence length increases, these models suffer from a loss of information, leading to missed keywords and unsatisfactory results. To address this, we propose an attentional GAN (AttnGAN) model with a text attention mechanism. We evaluate AttnGAN variants on the MS-COCO dataset qualitatively an
55#
發(fā)表于 2025-3-31 01:41:34 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:36 | 只看該作者
,MAAD-GAN: Memory-Augmented Attention-Based Discriminator GAN for?Video Anomaly Detection,troduces a novel approach, named MAAD-GAN, for video anomaly detection (VAD) utilizing Generative Adversarial Networks (GANs). The MAAD-GAN framework combines a Wide Residual Network (WRN) in the generator with a memory module to learn the normal patterns present in the training video dataset, enabl
57#
發(fā)表于 2025-3-31 11:10:14 | 只看該作者
,AG-PDCnet: An Attention Guided Parkinson’s Disease Classification Network with?MRI, DTI and?Clinican Guided multi-class multi-modal PD Classification framework. In particular, we combine clinical assessments with the Neuroimaging data, namely, MRI and DTI. The three classes considered for this problem are PD, Healthy Controls (HC) and Scans Without Evidence of Dopamine Deficiency (SWEDD). Four CN
58#
發(fā)表于 2025-3-31 14:58:58 | 只看該作者
59#
發(fā)表于 2025-3-31 21:35:29 | 只看該作者
60#
發(fā)表于 2025-4-1 01:00:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西充县| 霍邱县| 清水河县| 永修县| 德阳市| 永登县| 古蔺县| 尼玛县| 琼中| 甘孜县| 龙井市| 莆田市| 遂平县| 日喀则市| 杭锦后旗| 双鸭山市| 富阳市| 长岭县| 鄂托克前旗| 邳州市| 和平区| 石景山区| 易门县| 张家界市| 乌海市| 定西市| 清远市| 嘉兴市| 万州区| 黑山县| 黎平县| 呼伦贝尔市| 遂昌县| 晋宁县| 建湖县| 子洲县| 交城县| 襄垣县| 宁远县| 织金县| 泾川县|