找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 8th International Co Harkeerat Kaur,Vinit Jakhetiya,Sanjeev Kumar Conference proceedings 2024 The Edi

[復制鏈接]
樓主: T-Lymphocyte
51#
發(fā)表于 2025-3-30 09:58:21 | 只看該作者
Damage Segmentation and Restoration of Ancient Wall Paintings for Preserving Cultural Heritage,rating due to the passage of time, environmental factors, and human actions. Preserving and Restoring these delicate artworks is crucial. One approach to aid their digital restoration is leveraging advanced technologies like deep learning. This study applies image segmentation and restoration techni
52#
發(fā)表于 2025-3-30 13:21:38 | 只看該作者
53#
發(fā)表于 2025-3-30 17:39:07 | 只看該作者
,Fusion of?Handcrafted Features and?Deep Features to?Detect COVID-19,ures and handcrafted features to provide a unique method for COVID-19 identification using chest X-rays. In order to extract high-level features from the chest X-ray pictures, we first use a convolutional neural network (CNN) that has already been trained to take advantage of deep learning. The disc
54#
發(fā)表于 2025-3-30 23:49:04 | 只看該作者
,An Improved AttnGAN Model for?Text-to-Image Synthesis, text sequence length increases, these models suffer from a loss of information, leading to missed keywords and unsatisfactory results. To address this, we propose an attentional GAN (AttnGAN) model with a text attention mechanism. We evaluate AttnGAN variants on the MS-COCO dataset qualitatively an
55#
發(fā)表于 2025-3-31 01:41:34 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:36 | 只看該作者
,MAAD-GAN: Memory-Augmented Attention-Based Discriminator GAN for?Video Anomaly Detection,troduces a novel approach, named MAAD-GAN, for video anomaly detection (VAD) utilizing Generative Adversarial Networks (GANs). The MAAD-GAN framework combines a Wide Residual Network (WRN) in the generator with a memory module to learn the normal patterns present in the training video dataset, enabl
57#
發(fā)表于 2025-3-31 11:10:14 | 只看該作者
,AG-PDCnet: An Attention Guided Parkinson’s Disease Classification Network with?MRI, DTI and?Clinican Guided multi-class multi-modal PD Classification framework. In particular, we combine clinical assessments with the Neuroimaging data, namely, MRI and DTI. The three classes considered for this problem are PD, Healthy Controls (HC) and Scans Without Evidence of Dopamine Deficiency (SWEDD). Four CN
58#
發(fā)表于 2025-3-31 14:58:58 | 只看該作者
59#
發(fā)表于 2025-3-31 21:35:29 | 只看該作者
60#
發(fā)表于 2025-4-1 01:00:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
突泉县| 鹤壁市| 藁城市| 山西省| 太谷县| 玉田县| 彰化市| 安泽县| 西乡县| 尚志市| 武隆县| 灵川县| 凤山县| 东安县| 濉溪县| 长子县| 图木舒克市| 缙云县| 曲靖市| 大冶市| 柳江县| 乌鲁木齐县| 收藏| 田阳县| 浪卡子县| 温州市| 夏河县| 新河县| 珠海市| 正宁县| 兴业县| 长垣县| 靖安县| 斗六市| 鄂托克旗| 漳州市| 阳泉市| 黔东| 工布江达县| 原平市| 金塔县|