找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 8th International Co Harkeerat Kaur,Vinit Jakhetiya,Sanjeev Kumar Conference proceedings 2024 The Edi

[復(fù)制鏈接]
樓主: BOUT
11#
發(fā)表于 2025-3-23 13:45:29 | 只看該作者
,Robust Unsupervised Geo-Spatial Change Detection Algorithm for?SAR Images, unsupervised grid graph generation algorithm specifically designed for change detection using Synthetic Aperture Radar (SAR) images. The proposed technique encompasses a multi-step process: starting with an improved log-ratio based difference image generation, followed by shortest path vector compu
12#
發(fā)表于 2025-3-23 16:33:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:12:15 | 只看該作者
14#
發(fā)表于 2025-3-24 01:23:16 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:29 | 只看該作者
16#
發(fā)表于 2025-3-24 08:37:14 | 只看該作者
17#
發(fā)表于 2025-3-24 11:17:40 | 只看該作者
MuSTAT: Face Ageing Using Multi-scale Target Age Style Transfer,age gap. Although this can be solved using data collected over long age spans, it is challenging and tedious. This work proposes a multi-scale target age-based style face ageing model using an encoder-decoder architecture to generate high-fidelity face images under ageing. Further, we propose using
18#
發(fā)表于 2025-3-24 15:09:41 | 只看該作者
,Efficient Contextual Feature Network for?Single Image Super Resolution,g feature utilization through complex layer connections. However, these methods may not be suitable for resource-constrained devices due to their computational demands. We propose a novel approach called Efficient Contextual Feature Network (ECFN) to address this issue. ECFN utilizes two convolution
19#
發(fā)表于 2025-3-24 20:22:22 | 只看該作者
T-Fusion Net: A Novel Deep Neural Network Augmented with Multiple Localizations Based Spatial Attenworks. Nonetheless, the growing complexity of datasets and the ongoing pursuit of enhanced performance necessitate innovative approaches. In this study, we introduce a novel deep neural network, referred to as the “T-Fusion Net,” which incorporates multiple spatial attention mechanisms based on loca
20#
發(fā)表于 2025-3-24 23:51:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门县| 普陀区| 中西区| 屏边| 冷水江市| 灌云县| 隆昌县| 武平县| 措美县| 高平市| 西乡县| 和龙市| 陆丰市| 松滋市| 桃园县| 兰考县| 丰顺县| 盐津县| 美姑县| 个旧市| 五华县| 泽州县| 绥江县| 内乡县| 尚志市| 丘北县| 华安县| 琼中| 崇左市| 台安县| 黄大仙区| 武宣县| 宁夏| 金门县| 新津县| 连江县| 托里县| 林甸县| 新宁县| 庆元县| 南汇区|