找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Methods for 3D Genome Analysis; Ryuichiro Nakato Book 2025 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 恰當(dāng)
51#
發(fā)表于 2025-3-30 10:06:48 | 只看該作者
52#
發(fā)表于 2025-3-30 12:36:50 | 只看該作者
53#
發(fā)表于 2025-3-30 19:37:34 | 只看該作者
54#
發(fā)表于 2025-3-30 20:51:44 | 只看該作者
55#
發(fā)表于 2025-3-31 03:17:23 | 只看該作者
Feedback im Kontext von Potenzialanalysen, to detailed microscopic analysis. However, the circularity of prokaryotic genomes requires a number of tricks for Hi-C/3C-seq data analysis. Here, I provide a practical guide to use the HiC-Pro pipeline for Hi-C/3C-seq data obtained from prokaryotes.
56#
發(fā)表于 2025-3-31 06:01:00 | 只看該作者
https://doi.org/10.1007/978-3-658-24760-7 mapped to a reference genome to generate a two-dimensional contact matrix for identifying topologically associating domains (TADs), chromatin loops, and chromosomal compartments. On the other hand, the distance distribution of the paired-end mapped reads also provides insight into the 3D genome str
57#
發(fā)表于 2025-3-31 09:32:01 | 只看該作者
https://doi.org/10.1007/978-3-658-24760-7updated version that significantly improves extensibility, usability, and computational efficiency compared to its predecessor. It features pretrained models tailored for a wide range of experimental platforms, such as Hi-C, Micro-C, ChIA-PET, HiChIP, HiCAR, and TrAC-loop. This chapter offers a step
58#
發(fā)表于 2025-3-31 15:44:55 | 只看該作者
https://doi.org/10.1007/978-3-658-24760-7d by data resolution constraints. Consequently, comprehensive characterizations of sub-compartments have been limited to a select number of Hi-C experiments, with systematic comparisons across a wide range of tissues and conditions still lacking. Our original Calder algorithm marked a significant ad
59#
發(fā)表于 2025-3-31 21:16:07 | 只看該作者
60#
發(fā)表于 2025-3-31 21:54:08 | 只看該作者
https://doi.org/10.1007/978-3-658-08361-8sembles data analysis for bulk Hi-C, the unique challenges of scHi-C, such as high noise and protocol-specific biases, require specialized data processing strategies. In this tutorial chapter, we focus on using pairtools, a suite of tools optimized for scHi-C data, demonstrating its application on a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳州市| 博乐市| 西藏| 万山特区| 新昌县| 黔西县| 峨眉山市| 井冈山市| 东丰县| 辉南县| 花垣县| 正阳县| 泊头市| 册亨县| 通榆县| 荔波县| 岱山县| 梓潼县| 博乐市| 麟游县| 铜陵市| 太仆寺旗| 黄大仙区| 定州市| 武宁县| 甘肃省| 阳泉市| 修武县| 呈贡县| 富顺县| 萝北县| 大冶市| 龙州县| 乾安县| 江山市| 定襄县| 庆元县| 庐江县| 惠来县| 刚察县| 高邮市|