找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Science; 7th IFIP TC 12 Inter Mieczyslaw Lech Owoc,Felix Enigo Varghese Sicily,P Conference proceedings

[復(fù)制鏈接]
樓主: panache
11#
發(fā)表于 2025-3-23 11:57:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:31:14 | 只看該作者
Mieczyslaw Lech Owoc,Felix Enigo Varghese Sicily,P
13#
發(fā)表于 2025-3-23 18:44:29 | 只看該作者
14#
發(fā)表于 2025-3-24 00:13:03 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:38 | 只看該作者
https://doi.org/10.1007/978-3-658-27431-3 techniques. Designed for open-source collaboration, this solution is positioned for continuous improvement, adaptation to evolving needs, and addressing emerging challenges in the field of intelligent transportation and related domains. This paper represents a foundational step towards establishing
16#
發(fā)表于 2025-3-24 08:09:49 | 只看該作者
Arbeitsbereich Baumanagement – ic regression, SVM, stochastic gradient descent, decision trees, and ensemble models were conducted. In summary, this research contributes significantly to the ongoing battle against online toxicity and the promotion of more constructive online conversations. The RNN algorithm’s 99.47% accuracy rate
17#
發(fā)表于 2025-3-24 13:34:54 | 只看該作者
18#
發(fā)表于 2025-3-24 15:45:21 | 只看該作者
Die digitale Demokratie in der Schweizhese experiments, we attained exceptional F1 scores of 99% for RoBERTa, 98% for AlBERT, and 96% for BERT base. In contrast, traditional models like Logistic Regression achieved 93%, Random Forest 89%, and deep learning models such as LSTM, BiLSTM and CNN achieved 82%, 93% and 90%, respectively. The
19#
發(fā)表于 2025-3-24 19:32:59 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:04 | 只看該作者
Julian Bubel Dipl.-Ing.,Jürgen Grabend reduce complexity. This is leading to improved classification performance. The proposed work is evaluated on six machine-learning models. The features extracted achieving a consistent AUC-ROC score of 95%. The highest accuracy of 95% on the Cleveland dataset. Our proposed machine learning-based C
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延寿县| 佛山市| 巴彦县| 广宁县| 高碑店市| 嘉定区| 万年县| 辽阳市| 黔西县| 保德县| 南川市| 中宁县| 靖远县| 西乌| 定西市| 屯门区| 剑川县| 都江堰市| 杭锦后旗| 沁阳市| 舞钢市| 扬中市| 额济纳旗| 姚安县| 杭州市| 大渡口区| 黄骅市| 萨嘎县| 滕州市| 哈巴河县| 吴堡县| 湘潭县| 专栏| 湖南省| 于田县| 宽甸| 鄂托克旗| 华容县| 屏东县| 吴忠市| 闻喜县|