找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics, Graph Theory and Computing; SEICCGTC 2021, Boca Frederick Hoffman,Sarah Holliday,John Wierman Conference proceedings 2024 T

[復制鏈接]
樓主: Autonomous
51#
發(fā)表于 2025-3-30 09:07:00 | 只看該作者
Decomposition of the Johnson Graphs into Graph-Pairs of Order 4, the .-element subsets of a .-element set, and two vertices are adjacent if the intersection of the corresponding subsets contains . elements. We show necessary and sufficient conditions for .(.,?2) to admit a decomposition into graph-pairs of order 4.
52#
發(fā)表于 2025-3-30 13:53:40 | 只看該作者
,Multicore Graphs: Characterization and?Properties,pp. 517:30–52 (2017)) [.]. We prove that the multicore graphs are the .-free chordal graphs and we present a characterization of the class which provides a simple linear time recognition algorithm. We also show its interrelation with other subclasses of chordal graphs: the clique-corona graphs and the starlike graphs.
53#
發(fā)表于 2025-3-30 17:13:46 | 只看該作者
(2, 3)-Cordial Oriented Hypercubes, a (2,?3)-cordial oriented hypercube for any dimension divisible by 3. Next, we provide examples of (2,?3)-cordial oriented hypercubes of dimension not divisible by 3 and state a conjecture on existence for dimension .. We close by presenting the only 3D oriented hypercubes up?to isomorphism that are not (2,?3)-cordial.
54#
發(fā)表于 2025-3-30 21:11:07 | 只看該作者
,On the?Locating Rainbow Connection Number of?the?Comb Product with?Complete Graphs or?Trees, and define the locating rainbow connection number within this framework. Our main results establish tight upper and lower bounds for . in the context of comb products. Additionally, we determine the locating rainbow connection number for the comb product of an arbitrary graph with a complete graph or a tree.
55#
發(fā)表于 2025-3-31 01:00:38 | 只看該作者
,Cycle-Compelling Colorings of?Graphs,tains a cycle. The cycle-compelling number is defined to be the minimum . such that some .-coloring is cycle-compelling. We provide some general bounds and algorithmic results on this and related parameters. We also investigate the value in specific graph families including cubic graphs, disjoint union of cliques, and outerplanar graphs.
56#
發(fā)表于 2025-3-31 08:38:26 | 只看該作者
57#
發(fā)表于 2025-3-31 10:01:42 | 只看該作者
58#
發(fā)表于 2025-3-31 16:04:18 | 只看該作者
59#
發(fā)表于 2025-3-31 19:37:01 | 只看該作者
60#
發(fā)表于 2025-3-31 23:52:00 | 只看該作者
Jan Dijksterhuis,Robert A. Samson a (2,?3)-cordial oriented hypercube for any dimension divisible by 3. Next, we provide examples of (2,?3)-cordial oriented hypercubes of dimension not divisible by 3 and state a conjecture on existence for dimension .. We close by presenting the only 3D oriented hypercubes up?to isomorphism that are not (2,?3)-cordial.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 01:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
杭州市| 合阳县| 云阳县| 宁河县| 开封市| 合肥市| 常德市| 廉江市| 许昌县| 贵州省| 潞城市| 潜山县| 鹿邑县| 淮阳县| 台湾省| 兴国县| 泽州县| 哈巴河县| 丰台区| 达孜县| 兴安县| 嘉荫县| 乃东县| 谷城县| 馆陶县| 桂阳县| 丰台区| 蛟河市| 吴川市| 砚山县| 乡宁县| 饶河县| 重庆市| 石家庄市| 全州县| 会东县| 略阳县| 化隆| 邓州市| 龙门县| 合山市|