找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cybernetics, Cognition and Machine Learning Applications; Proceedings of ICCCM Vinit Kumar Gunjan,P. N. Suganthan,Amit Kumar Conference pro

[復(fù)制鏈接]
查看: 50080|回復(fù): 63
樓主
發(fā)表于 2025-3-21 18:15:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cybernetics, Cognition and Machine Learning Applications
副標題Proceedings of ICCCM
編輯Vinit Kumar Gunjan,P. N. Suganthan,Amit Kumar
視頻videohttp://file.papertrans.cn/242/241888/241888.mp4
概述Presents recent innovative research in the field of machine learning applications.Discusses the outcomes of ICCCMLA 2020, held in Goa, India.Serves as a reference resource for researchers and practiti
叢書名稱Algorithms for Intelligent Systems
圖書封面Titlebook: Cybernetics, Cognition and Machine Learning Applications; Proceedings of ICCCM Vinit Kumar Gunjan,P. N. Suganthan,Amit Kumar Conference pro
描述This book includes the original, peer reviewed research articles from the 2nd?International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA 2020), held in August, 2020 at Goa, India. It covers the latest research trends or developments in areas of data science, artificial intelligence, neural networks, cognitive science and machine learning applications, cyber physical systems and cybernetics.
出版日期Conference proceedings 2021
關(guān)鍵詞ICCCMLA 2020; Ubiquitous Intelligence and Computing; Mobile Computing; Human-Computer Interaction; Patte
版次1
doihttps://doi.org/10.1007/978-981-33-6691-6
isbn_softcover978-981-33-6693-0
isbn_ebook978-981-33-6691-6Series ISSN 2524-7565 Series E-ISSN 2524-7573
issn_series 2524-7565
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Cybernetics, Cognition and Machine Learning Applications影響因子(影響力)




書目名稱Cybernetics, Cognition and Machine Learning Applications影響因子(影響力)學科排名




書目名稱Cybernetics, Cognition and Machine Learning Applications網(wǎng)絡(luò)公開度




書目名稱Cybernetics, Cognition and Machine Learning Applications網(wǎng)絡(luò)公開度學科排名




書目名稱Cybernetics, Cognition and Machine Learning Applications被引頻次




書目名稱Cybernetics, Cognition and Machine Learning Applications被引頻次學科排名




書目名稱Cybernetics, Cognition and Machine Learning Applications年度引用




書目名稱Cybernetics, Cognition and Machine Learning Applications年度引用學科排名




書目名稱Cybernetics, Cognition and Machine Learning Applications讀者反饋




書目名稱Cybernetics, Cognition and Machine Learning Applications讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:20 | 只看該作者
Simulating User Journeys with?Active Objectstabase along with the patient’s ID. The key objective of this automatic update of pulse or ECG measurements of patients is to prevent any errors caused due to their manual entry. The data of any patient can be readily accessed anytime through the EMR system.
板凳
發(fā)表于 2025-3-22 01:37:19 | 只看該作者
Fundamentals of Corrosion Kineticson v3 model gave the best training accuracy of 99.22%, while custom made CNN3 gave a promising training accuracy of 96.61%. Both models gave a similar validation accuracy of 97.89%. Sensitivity and specificity for COVID-19 were (100% and 98.5%) and (100% and 100%) for Inception v3 and CNN3, respectively.
地板
發(fā)表于 2025-3-22 08:10:25 | 只看該作者
5#
發(fā)表于 2025-3-22 10:31:18 | 只看該作者
6#
發(fā)表于 2025-3-22 13:13:28 | 只看該作者
Detecting COVID-19 Using Convolution Neural Networks,on v3 model gave the best training accuracy of 99.22%, while custom made CNN3 gave a promising training accuracy of 96.61%. Both models gave a similar validation accuracy of 97.89%. Sensitivity and specificity for COVID-19 were (100% and 98.5%) and (100% and 100%) for Inception v3 and CNN3, respectively.
7#
發(fā)表于 2025-3-22 20:33:19 | 只看該作者
IoT-Enabled Logistics for E-waste Management and Sustainability, create a win–win situation for both, the developed and developing countries economically and also in an environment-friendly manner. This review paper contributes to the knowledge of e-waste management and is expected to benefit the industry and society.
8#
發(fā)表于 2025-3-22 23:36:06 | 只看該作者
Navigation Through Proxy Measurement of Location by Surface Detection,considered surface types are captured by moving the system containing embedded IMU sensor with raspberry pi on different surfaces. Hence, a robust and portable system is developed which is capable of recognizing the type of surface on which it is navigating.
9#
發(fā)表于 2025-3-23 03:16:47 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:00 | 只看該作者
Feature Construction Through Inductive Transfer Learning in Computer Vision,nd will publish the experiment results for Inception V3, VGG16, and Resnet50 models on the ImageNet dataset by varying the image sizes for source and target datasets, for Inductive transfer Learning and various techniques or methods specially by doing the model transfer.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 韩城市| 伊金霍洛旗| 肃宁县| 天津市| 哈尔滨市| 横峰县| 宿州市| 阜平县| 嵩明县| 江陵县| 无极县| 江门市| 行唐县| 扎囊县| 来安县| 林芝县| 永定县| 阿坝| 平阳县| 禄丰县| 瑞金市| 南华县| 涟水县| 遂宁市| 晋中市| 弋阳县| 马尔康县| 南召县| 隆子县| 林甸县| 莒南县| 曲靖市| 定结县| 玛曲县| 泽州县| 慈溪市| 松溪县| 夏邑县| 凤凰县| 甘肃省|