找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cybernetics Approaches in Intelligent Systems; Computational Method Radek Silhavy,Petr Silhavy,Zdenka Prokopova Conference proceedings 2018

[復(fù)制鏈接]
樓主: 開脫
21#
發(fā)表于 2025-3-25 04:25:02 | 只看該作者
22#
發(fā)表于 2025-3-25 10:11:44 | 只看該作者
Moulay Driss Mechaoui,Abdessamad Imineion..In this work we provide low rank estimations for sequences generated by different designs based on digit sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring ., ., ., with numbers . such that ., ., and on digit sequences of coordinate sequences of matrix/skew MP LRS over such Galois rings.
23#
發(fā)表于 2025-3-25 13:36:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:38:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:03:16 | 只看該作者
Controllability of Evolution Differential Inclusion with Nonlocal Condition in Banach Space,In this paper, we consider the controllability of a class of evolution inclusion in Banach space. A sufficient condition is established by using the fixed-point theorem for multi-valued.
26#
發(fā)表于 2025-3-26 01:18:04 | 只看該作者
Lower Bounds on Linear Complexity of Digital Sequences Products of LRS and Matrix LRS over Galois Rion..In this work we provide low rank estimations for sequences generated by different designs based on digit sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring ., ., ., with numbers . such that ., ., and on digit sequences of coordinate sequences of matrix/skew MP LRS over such Galois rings.
27#
發(fā)表于 2025-3-26 04:41:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:18:19 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:01:54 | 只看該作者
Mitochondria in Neurodegenerationticularly the example of the additive uncertainty model creation on the basis of a third order integrating plant with parametric uncertainty by means of the selection of a nominal system and a suitable weight function. Moreover, it compares the results of robust stability border investigation for pa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 13:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南投市| 西宁市| 乳源| 沧州市| 布拖县| 临湘市| 色达县| 泰顺县| 钦州市| 黄龙县| 云林县| 陇南市| 留坝县| 蕉岭县| 开封县| 循化| 尉犁县| 桂林市| 宁德市| 元氏县| 凤翔县| 洪湖市| 屏边| 新邵县| 定结县| 建宁县| 潼南县| 汾阳市| 南乐县| 平南县| 双桥区| 军事| 土默特右旗| 礼泉县| 中阳县| 任丘市| 宁晋县| 昔阳县| 科技| 九龙县| 满洲里市|