找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cybernetics Approaches in Intelligent Systems; Computational Method Radek Silhavy,Petr Silhavy,Zdenka Prokopova Conference proceedings 2018

[復(fù)制鏈接]
樓主: 開脫
21#
發(fā)表于 2025-3-25 04:25:02 | 只看該作者
22#
發(fā)表于 2025-3-25 10:11:44 | 只看該作者
Moulay Driss Mechaoui,Abdessamad Imineion..In this work we provide low rank estimations for sequences generated by different designs based on digit sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring ., ., ., with numbers . such that ., ., and on digit sequences of coordinate sequences of matrix/skew MP LRS over such Galois rings.
23#
發(fā)表于 2025-3-25 13:36:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:38:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:03:16 | 只看該作者
Controllability of Evolution Differential Inclusion with Nonlocal Condition in Banach Space,In this paper, we consider the controllability of a class of evolution inclusion in Banach space. A sufficient condition is established by using the fixed-point theorem for multi-valued.
26#
發(fā)表于 2025-3-26 01:18:04 | 只看該作者
Lower Bounds on Linear Complexity of Digital Sequences Products of LRS and Matrix LRS over Galois Rion..In this work we provide low rank estimations for sequences generated by different designs based on digit sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring ., ., ., with numbers . such that ., ., and on digit sequences of coordinate sequences of matrix/skew MP LRS over such Galois rings.
27#
發(fā)表于 2025-3-26 04:41:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:18:19 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:01:54 | 只看該作者
Mitochondria in Neurodegenerationticularly the example of the additive uncertainty model creation on the basis of a third order integrating plant with parametric uncertainty by means of the selection of a nominal system and a suitable weight function. Moreover, it compares the results of robust stability border investigation for pa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 15:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清徐县| 广平县| 望都县| 黑河市| 嵊州市| 华亭县| 都江堰市| 青铜峡市| 贵南县| 西峡县| 方城县| 乌兰浩特市| 日喀则市| 曲阜市| 克山县| 安多县| 泰来县| 无棣县| 永昌县| 分宜县| 石景山区| 东乡族自治县| 湖州市| 延寿县| 安庆市| 高台县| 登封市| 天津市| 清苑县| 德州市| 衡山县| 金门县| 五家渠市| 弥勒县| 景东| 永春县| 年辖:市辖区| 富阳市| 临沭县| 洱源县| 东乡县|