找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyber-Physical Systems: Intelligent Models and Algorithms; Alla G. Kravets,Alexander A. Bolshakov,Maxim Shche Book 2022 The Editor(s) (if

[復(fù)制鏈接]
查看: 31391|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:28:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms
編輯Alla G. Kravets,Alexander A. Bolshakov,Maxim Shche
視頻videohttp://file.papertrans.cn/242/241820/241820.mp4
概述Defines the activities in the modelling technologies field leverage the exploitation of artificial intelligence.Describes fuzzy models and algorithms as well as implementation of these technologies in
叢書名稱Studies in Systems, Decision and Control
圖書封面Titlebook: Cyber-Physical Systems: Intelligent Models and Algorithms;  Alla G. Kravets,Alexander A. Bolshakov,Maxim Shche Book 2022 The Editor(s) (if
描述This book is devoted to intelligent models and algorithms as the core components of cyber-physical systems.?The complexity of cyber-physical systems developing and deploying requires new approaches to its modelling and design. Presents results in the field of modelling technologies that leverage the exploitation of artificial intelligence, including artificial general intelligence (AGI) and weak artificial intelligence. Provides scientific, practical, and methodological approaches based on bio-inspired methods,? fuzzy models and algorithms, predictive modelling, computer vision and image processing. The target audience of the book are practitioners, enterprises representatives, scientists, PhD and Master students who perform scientific research or applications of intelligent models and algorithms in cyber-physical systems for various domains.
出版日期Book 2022
關(guān)鍵詞Cyber-Physical Systems; Bio-Inspired Modelling; Artificial Intelligence; Computer Vision; Image Processi
版次1
doihttps://doi.org/10.1007/978-3-030-95116-0
isbn_softcover978-3-030-95118-4
isbn_ebook978-3-030-95116-0Series ISSN 2198-4182 Series E-ISSN 2198-4190
issn_series 2198-4182
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms影響因子(影響力)




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms影響因子(影響力)學(xué)科排名




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms網(wǎng)絡(luò)公開度




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms被引頻次




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms被引頻次學(xué)科排名




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms年度引用




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms年度引用學(xué)科排名




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms讀者反饋




書目名稱Cyber-Physical Systems: Intelligent Models and Algorithms讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:04 | 只看該作者
An Extension of the Neural Additive Model for Uncertainty Explanation of Machine Learning Survival Mlanation are represented in the form of shape functions which show the impact or contribution of every feature on the prediction provided by the black-box model. An algorithm implementing the method is presented. Numerical examples illustrate the proposed method by using real datasets including the
板凳
發(fā)表于 2025-3-22 01:37:03 | 只看該作者
Artificial Immune Systems—Models and Applicationsection method provides more accurate results, but is more time and memory-consuming than the negative selection method. Both approaches can be used in different settings. Various applications with a large amount of “friendly” data are more preferable for the negative selection method. For the networ
地板
發(fā)表于 2025-3-22 05:01:20 | 只看該作者
The Analysis of Technology Development Trends Based on the Network Semantic Structure “Subject-Actio. Grid computing technologies have been chosen as a successful and efficient means of processing large text data in the form of patents. An algorithm for parsing a patent document has been developed; an algorithm for preprocessing text documents of a patent selection; a Subject-Action-Object (SAO) e
5#
發(fā)表于 2025-3-22 10:56:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:23:10 | 只看該作者
7#
發(fā)表于 2025-3-22 19:33:57 | 只看該作者
Building a Fuzzy Model to Automate the Search for Product Names in Procurement Documentation for a Sbed by fuzzy sets with Gaussian membership functions. The fuzzy inference algorithm is implemented in PHP 5.6, PHP Framework Laravel. The procurement documentation database is implemented in the MySQL system. The results of the algorithm are presented.
8#
發(fā)表于 2025-3-22 23:47:41 | 只看該作者
Synthesis of a Neuro-Fuzzy Model in the Structure of an Automatic Rolling Stock Control Systemds and with the FNN data. Its results confirm the effectiveness of the use of this fuzzy neural network in the optimization of train traffic control in real-time. The simulation was performed in the MATLAB environment.
9#
發(fā)表于 2025-3-23 04:43:35 | 只看該作者
10#
發(fā)表于 2025-3-23 06:07:45 | 只看該作者
Operational Model Predictive Control on the Example of the Stabilization Process for Hydro Treatmentnd is one of the most important processes of oil refining and, in particular, a hydrotreating unit of a low-temperature isomerization unit. As a result of this process, the stream is not only cleaned of unnecessary components by separating from it dissolved light hydrocarbons, water, and hydrogen su
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜兴市| 京山县| 瑞金市| 阳山县| 肥东县| 建水县| 莫力| 永吉县| 义乌市| 大名县| 镇原县| 赤壁市| 黎城县| 黄石市| 连江县| 紫云| 沙坪坝区| 东乡县| 和平县| 息烽县| 措勤县| 岱山县| 金塔县| 包头市| 威海市| 邹平县| 壤塘县| 元江| 金阳县| 白水县| 广宗县| 石景山区| 铜陵市| 高雄市| 保靖县| 遂昌县| 古田县| 梁河县| 襄城县| 莱芜市| 滦南县|