找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyber-Physical Systems and Control II; Dmitry G. Arseniev,Nabil Aouf Conference proceedings 2023 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: otitis-externa
31#
發(fā)表于 2025-3-26 22:56:44 | 只看該作者
Gro?rechner und die Zipfsche Regeltics independent on the parameters of the?parent distribution. If analytical construction is not possible, the distribution function of such statistics can be determined as a result of statistical modeling.
32#
發(fā)表于 2025-3-27 03:45:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:53:28 | 只看該作者
Der Soziabele und der Solit?re Menschentypusoned approaches into a single working flow proves its efficiency due to significant reduction of efforts on dataset preparation and high accuracy of the detection and recognition: the implemented system recognizes license plates with 94,8% accuracy on a test sample of 20,000 images.
34#
發(fā)表于 2025-3-27 12:13:05 | 只看該作者
35#
發(fā)表于 2025-3-27 17:33:44 | 只看該作者
36#
發(fā)表于 2025-3-27 20:11:20 | 只看該作者
License Plates Detection and Recognition Based on Semi-supervised Learningoned approaches into a single working flow proves its efficiency due to significant reduction of efforts on dataset preparation and high accuracy of the detection and recognition: the implemented system recognizes license plates with 94,8% accuracy on a test sample of 20,000 images.
37#
發(fā)表于 2025-3-28 00:38:07 | 只看該作者
Physics-Informed Radial Basis Function Networks: Solving Inverse Problems for Partial Differential Ermed neural networks to solve direct and inverse boundary value problems is presented. It is proposed to use radial basis function neural networks (RBFNNs) as physically-informed neural networks, which have a simple structure and the?ability to adjust the non-linear parameters of the basis functions
38#
發(fā)表于 2025-3-28 04:14:42 | 只看該作者
On a Method for Identifying Failure Models of Complex Systemsication of the failure model is conducted in conditions of insufficient information using small ordered samples. When applying the methods of the theory of stochastic indication, the features of a limited volume and rapid aging of information are taken into account. Expansion of the range of possibi
39#
發(fā)表于 2025-3-28 08:08:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:25:56 | 只看該作者
Method of Expansion of Mathematical Tools of the Reliability Theory Due to the Properties of Stochasrties of the stochastic theory of similarity are proposed and justified in the article. Such an?approach to creating mathematical “symbiosis” of two large theories is aimed at improving the efficiency of solving the problem of identification of the quality indicators (reliability) of complex technic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东省| 凉城县| 阿拉善盟| 麟游县| 从江县| 商南县| 彩票| 亳州市| 康保县| 灵石县| 昌江| 恭城| 双峰县| 诸城市| 谢通门县| 渑池县| 武功县| 托克托县| 滕州市| 济源市| 紫金县| 柯坪县| 成武县| 德钦县| 通河县| 桓台县| 萍乡市| 兴山县| 德格县| 大名县| 木兰县| 阿克陶县| 扬中市| 蒙自县| 和硕县| 广饶县| 荃湾区| 通海县| 罗田县| 于田县| 宜城市|