找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cutting Edge Applications of Computational Intelligence Tools and Techniques; Kevin Daimi,Abeer Alsadoon,Luis Coelho Book 2023 The Editor(

[復(fù)制鏈接]
樓主: Lipase
31#
發(fā)表于 2025-3-26 23:13:12 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:21 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:41 | 只看該作者
Using Artificial Neural Networks to Predict Critical Displacement and Stress Values in the Proximal ons, however, is rising today. As a result, classic solution methods typically require more processing power and exhibit higher computational costs. To lower the computing cost associated with the numerical analysis, machine learning approaches can be coupled with the FEM and used as surrogate solve
34#
發(fā)表于 2025-3-27 12:45:47 | 只看該作者
An Integrated Model for Automated Identification and Learning of Conversational Gestures in Human–Ro, express mental states, describe entities and actions in dialogs, and provide object localization. Cognitive psychologists have proposed many classifications of human gestures, based upon discourse analysis, head-motion, and hand-motion and shapes. Many machine and deep learning techniques have bee
35#
發(fā)表于 2025-3-27 13:56:03 | 只看該作者
Computational Intelligence Methods for User Matching However, there are still many issues here, mainly in efficiency and effectiveness. As the time complexity of direct one-to-one user matching is .(.) (Suppose there are . users on one platform and . users on another platform), the computation time increases exponentially as the number of users grows
36#
發(fā)表于 2025-3-27 18:38:50 | 只看該作者
ATIAS: A Model for Understanding Intentions to Use AI Technologys. ATIAS (AI Trust and Intention to use AI Systems) is a hybrid model that combines AI ethics variables with technology acceptance model (TAM) variables. The approach is appropriate for surveys of large populations of consumers and other decision-makers to collect data on their levels of trust in AI
37#
發(fā)表于 2025-3-27 23:20:24 | 只看該作者
Electronics Engineering Perspectives on Computer Vision Applications: An Overview of Techniques, Subn tasks, key techniques, and algorithms. Traditional feature extraction methods and deep learning techniques, including prominent algorithms like Region-Based Convolutional Neural Network (R-CNN) and You Only Look Once (YOLO), are explored. We discuss important sub-areas such as image classification
38#
發(fā)表于 2025-3-28 06:02:06 | 只看該作者
39#
發(fā)表于 2025-3-28 09:30:59 | 只看該作者
40#
發(fā)表于 2025-3-28 14:26:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛曲县| 许昌市| 九龙县| 新泰市| 莲花县| 分宜县| 长宁县| 西丰县| 孝感市| 垦利县| 曲松县| 漯河市| 德格县| 通州区| 鹤山市| 玉龙| 珠海市| 库伦旗| 石棉县| 湘潭市| 且末县| 新津县| 当阳市| 静宁县| 吉安县| 林周县| 广平县| 宜昌市| 龙山县| 西安市| 宜兰县| 奉贤区| 封开县| 诸城市| 睢宁县| 宁国市| 南阳市| 怀远县| 邹城市| 莱阳市| 句容市|