找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Curves and Surfaces; Marco Abate,Francesca Tovena Textbook 2012 Springer-Verlag Milan 2012

[復制鏈接]
樓主: STRI
11#
發(fā)表于 2025-3-23 13:20:10 | 只看該作者
Methodology of the National ES Assessment surface; but, unlike what happened for curves, for surfaces it will turn out to be more useful to work with subsets of ?. that locally look like an open subset of the plane, instead of working with maps from an open subset of ?. to ?. having an injective differential.
12#
發(fā)表于 2025-3-23 17:49:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:52:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:15:42 | 只看該作者
15#
發(fā)表于 2025-3-24 05:55:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:38:06 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:45 | 只看該作者
Jeffrey P. Spike,Rebecca Lunstroth describe a curve in space. Finally, in the supplementary material, we shall present (in .) the local canonical shape of a curve; we shall prove a result (Whitney’s Theorem 1.1.7, in .) useful to understand what . be the precise definition of a curve; we shall study (in .) a particularly well-behave
18#
發(fā)表于 2025-3-24 16:22:38 | 只看該作者
2038-5714 differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivation978-88-470-1940-9978-88-470-1941-6Series ISSN 2038-5714 Series E-ISSN 2532-3318
19#
發(fā)表于 2025-3-24 18:59:46 | 只看該作者
Local theory of curves, describe a curve in space. Finally, in the supplementary material, we shall present (in .) the local canonical shape of a curve; we shall prove a result (Whitney’s Theorem 1.1.7, in .) useful to understand what . be the precise definition of a curve; we shall study (in .) a particularly well-behave
20#
發(fā)表于 2025-3-24 23:37:31 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 08:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵璧县| 顺昌县| 达孜县| 德化县| 平顶山市| 西乡县| 历史| 民县| 波密县| 平利县| 荥经县| 宜城市| 瑞昌市| 英德市| 专栏| 梓潼县| 遂平县| 馆陶县| 东平县| 沙雅县| 兰溪市| 沾化县| 宜城市| 乐都县| 江西省| 那曲县| 安阳市| 顺昌县| 新乡市| 吉木萨尔县| 郯城县| 嵩明县| 吉林省| 重庆市| 阳山县| 峨眉山市| 庆云县| 孟州市| 新昌县| 普格县| 鲜城|