找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Curves and Surfaces; Marco Abate,Francesca Tovena Textbook 2012 Springer-Verlag Milan 2012

[復(fù)制鏈接]
樓主: STRI
11#
發(fā)表于 2025-3-23 13:20:10 | 只看該作者
Methodology of the National ES Assessment surface; but, unlike what happened for curves, for surfaces it will turn out to be more useful to work with subsets of ?. that locally look like an open subset of the plane, instead of working with maps from an open subset of ?. to ?. having an injective differential.
12#
發(fā)表于 2025-3-23 17:49:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:52:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:15:42 | 只看該作者
15#
發(fā)表于 2025-3-24 05:55:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:38:06 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:45 | 只看該作者
Jeffrey P. Spike,Rebecca Lunstroth describe a curve in space. Finally, in the supplementary material, we shall present (in .) the local canonical shape of a curve; we shall prove a result (Whitney’s Theorem 1.1.7, in .) useful to understand what . be the precise definition of a curve; we shall study (in .) a particularly well-behave
18#
發(fā)表于 2025-3-24 16:22:38 | 只看該作者
2038-5714 differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivation978-88-470-1940-9978-88-470-1941-6Series ISSN 2038-5714 Series E-ISSN 2532-3318
19#
發(fā)表于 2025-3-24 18:59:46 | 只看該作者
Local theory of curves, describe a curve in space. Finally, in the supplementary material, we shall present (in .) the local canonical shape of a curve; we shall prove a result (Whitney’s Theorem 1.1.7, in .) useful to understand what . be the precise definition of a curve; we shall study (in .) a particularly well-behave
20#
發(fā)表于 2025-3-24 23:37:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大城县| 石楼县| 九龙城区| 固安县| 兴海县| 重庆市| 郴州市| 秦安县| 青川县| 德庆县| 绍兴市| 孟津县| 庆阳市| 黄冈市| 长白| 茂名市| 牡丹江市| 建湖县| 黔西县| 厦门市| 拉萨市| 任丘市| 江门市| 天柱县| 通许县| 全南县| 琼结县| 凌海市| 昌江| 化德县| 株洲县| 韩城市| 自治县| 静宁县| 咸阳市| 金湖县| 朝阳县| 光山县| 英吉沙县| 吕梁市| 崇仁县|