找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Number Theory; Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 15:09:05 | 只看該作者
On Automorphism Groups of Algebraic Curves, we give classical results on the upper bounds of the order of Aut(.). In §2, we discuss the relation between Aut(.) and .-ranks of ., when the ground field . has characteristic . > 0. Finally in §3, we give an upper bound of the orders of abelian subgroups of Aut(.).
42#
發(fā)表于 2025-3-28 22:03:47 | 只看該作者
Zeta Functions for Curves Defined over Finite Fields,lds. We state these conjectures, and also the more recent Weil theorem for singular curves defined over finite fields. We end by remarking on some explicit results we have obtained for the zeta functions of some concrete classes of curves (both non-singular and singular) defined over a certain class of finite fields.
43#
發(fā)表于 2025-3-29 00:54:15 | 只看該作者
An Equation of Goormaghtigh and Diophantine Approximations,mations by applying them to (1). All the constants appearing in this article are effectively computable. This means that they can be determined explicitly in terms of various parameters involved. By .(.), we understand that . is a number depending only on ..
44#
發(fā)表于 2025-3-29 06:29:25 | 只看該作者
The Cyclotomic Problem,acobi sums play an important role in this theory. The present paper is a survey of the work of a number of mathematicians on this problem and indicates the current status of the problem. Recently, Paul van Wamelen has obtained a solution to the problem for any modulus.
45#
發(fā)表于 2025-3-29 10:46:13 | 只看該作者
46#
發(fā)表于 2025-3-29 12:48:17 | 只看該作者
47#
發(fā)表于 2025-3-29 17:45:36 | 只看該作者
Springer Fachmedien Wiesbaden GmbHmations by applying them to (1). All the constants appearing in this article are effectively computable. This means that they can be determined explicitly in terms of various parameters involved. By .(.), we understand that . is a number depending only on ..
48#
發(fā)表于 2025-3-29 21:02:11 | 只看該作者
49#
發(fā)表于 2025-3-30 01:32:01 | 只看該作者
50#
發(fā)表于 2025-3-30 05:58:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 20:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冀州市| 扎赉特旗| 修武县| 米易县| 高邮市| 茶陵县| 灵寿县| 临澧县| 辽宁省| 习水县| 玉溪市| 襄垣县| 封丘县| 聂拉木县| 双鸭山市| 平罗县| 蕉岭县| 秭归县| 丁青县| 秦安县| 高尔夫| 交城县| 资溪县| 东乡族自治县| 定结县| 西宁市| 镇雄县| 白河县| 玉溪市| 临夏市| 峨山| 正镶白旗| 上栗县| 武汉市| 贞丰县| 德令哈市| 漳浦县| 防城港市| 嵊州市| 灵石县| 临泽县|