找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Mathematical Analysis and Its Interdisciplinary Applications; Hemen Dutta,Ljubi?a D. R. Ko?inac,Hari M. Srivasta Book 20

[復(fù)制鏈接]
樓主: Washington
31#
發(fā)表于 2025-3-27 00:41:09 | 只看該作者
180 Keywords Geld- und W?hrungsrechty spaces. More precisely, if the maximal time of existence of solutions for these equations is finite, we demonstrate the explosion, near this instant, of some limits superior and integrals involving a specific usual Lebesgue spaces and, as a consequence, we prove the lower bounds related to Sobolev–Gevrey spaces.
32#
發(fā)表于 2025-3-27 01:26:17 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:06 | 只看該作者
34#
發(fā)表于 2025-3-27 10:16:26 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:32 | 只看該作者
https://doi.org/10.1007/978-3-658-28295-0generalized gradient and the Navier–Stokes type operator which are associated with hemivariational inequalities in the reflexive Orlicz–Sobolev spaces. Moreover, our study, in both aforementioned cases, is supplemented by similar results for the Stokes flows where the convective term is negligible.
36#
發(fā)表于 2025-3-27 19:18:44 | 只看該作者
180 Keywords Geld- und W?hrungsrechtn. We prove the existence, uniqueness, and convergence results together with the corresponding mechanical interpretation. We illustrate these results in the study of a one-dimensional example. Finally, we end this chapter with some concluding remarks.
37#
發(fā)表于 2025-3-27 22:13:54 | 只看該作者
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
38#
發(fā)表于 2025-3-28 04:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:02:00 | 只看該作者
Frictional Contact Problems for Steady Flow of Incompressible Fluids in Orlicz Spaces,nded domain with subdifferential boundary conditions in Orlicz spaces. Two general cases are investigated. First, we study the non-Newtonian fluid flow with a non-polynomial growth of the extra (viscous) part of the Cauchy stress tensor together with multivalued nonmonotone slip boundary conditions
40#
發(fā)表于 2025-3-28 12:11:25 | 只看該作者
Discrete Fourier Transform and Theta Function Identities,f the DFT Φ(.) expressed in terms of the theta functions. An extended version of the classical Watson addition formula and Riemann’s identity on theta functions is derived. Watson addition formula and Riemann’s identity are obtained as a particular case. An extensions of some classical identities co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定陶县| 固始县| 理塘县| 桦甸市| 饶河县| 汉川市| 临城县| 英超| 黑河市| 甘南县| 永仁县| 苍南县| 讷河市| 垦利县| 漠河县| 临高县| 准格尔旗| 临江市| 怀来县| 同德县| 邮箱| 龙岩市| 云龙县| 广河县| 嘉兴市| 延寿县| 张家界市| 虎林市| 晋中市| 宜良县| 嘉兴市| 泗水县| 宁晋县| 大兴区| 江华| 和硕县| 金华市| 通江县| 浙江省| 三穗县| 嘉荫县|