找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Mathematical Analysis and Its Interdisciplinary Applications; Hemen Dutta,Ljubi?a D. R. Ko?inac,Hari M. Srivasta Book 20

[復(fù)制鏈接]
樓主: Washington
31#
發(fā)表于 2025-3-27 00:41:09 | 只看該作者
180 Keywords Geld- und W?hrungsrechty spaces. More precisely, if the maximal time of existence of solutions for these equations is finite, we demonstrate the explosion, near this instant, of some limits superior and integrals involving a specific usual Lebesgue spaces and, as a consequence, we prove the lower bounds related to Sobolev–Gevrey spaces.
32#
發(fā)表于 2025-3-27 01:26:17 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:06 | 只看該作者
34#
發(fā)表于 2025-3-27 10:16:26 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:32 | 只看該作者
https://doi.org/10.1007/978-3-658-28295-0generalized gradient and the Navier–Stokes type operator which are associated with hemivariational inequalities in the reflexive Orlicz–Sobolev spaces. Moreover, our study, in both aforementioned cases, is supplemented by similar results for the Stokes flows where the convective term is negligible.
36#
發(fā)表于 2025-3-27 19:18:44 | 只看該作者
180 Keywords Geld- und W?hrungsrechtn. We prove the existence, uniqueness, and convergence results together with the corresponding mechanical interpretation. We illustrate these results in the study of a one-dimensional example. Finally, we end this chapter with some concluding remarks.
37#
發(fā)表于 2025-3-27 22:13:54 | 只看該作者
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
38#
發(fā)表于 2025-3-28 04:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:02:00 | 只看該作者
Frictional Contact Problems for Steady Flow of Incompressible Fluids in Orlicz Spaces,nded domain with subdifferential boundary conditions in Orlicz spaces. Two general cases are investigated. First, we study the non-Newtonian fluid flow with a non-polynomial growth of the extra (viscous) part of the Cauchy stress tensor together with multivalued nonmonotone slip boundary conditions
40#
發(fā)表于 2025-3-28 12:11:25 | 只看該作者
Discrete Fourier Transform and Theta Function Identities,f the DFT Φ(.) expressed in terms of the theta functions. An extended version of the classical Watson addition formula and Riemann’s identity on theta functions is derived. Watson addition formula and Riemann’s identity are obtained as a particular case. An extensions of some classical identities co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂托克旗| 正定县| 定结县| 宾川县| 绥阳县| 江安县| 浦城县| 镇原县| 革吉县| 渭南市| 昭觉县| 华亭县| 岳阳市| 南京市| 公主岭市| 开封市| 常宁市| 定襄县| 竹山县| 大庆市| 石渠县| 论坛| 乌海市| 大埔县| 成安县| 双桥区| 固原市| 府谷县| 莱州市| 凤庆县| 石首市| 台东市| 肥西县| 安阳市| 长沙市| 大竹县| 中方县| 高唐县| 体育| 金山区| 连城县|