找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Topics in Summability Theory and Applications; Hemen Dutta,Billy E. Rhoades Book 2016 Springer Science+Business Media Singapore 20

[復(fù)制鏈接]
樓主: concession
11#
發(fā)表于 2025-3-23 13:23:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:26 | 只看該作者
On Summability, Multipliability, and Integrability,notions of convergence of infinite series and products. The members of the families are assumed to be elements of general Banach spaces or Banach algebras, but most of our results are new even in the real-valued case. Our studies are also motivated by problems in integration theory of functions of o
13#
發(fā)表于 2025-3-23 21:35:46 | 只看該作者
Multi-dimensional Summability Theory and Continuous Wavelet Transform,ansforms are considered, the circular and rectangular summability. Norm and almost everywhere convergence of the .-means are shown for both types. The inversion formula for the continuous wavelet transform is usually considered in the weak sense. Here, the inverse wavelet transform is traced back to
14#
發(fā)表于 2025-3-23 23:41:28 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:34 | 只看該作者
Some Applications of Summability Theory,summability theory in sequence spaces define by modulus function, Orlicz function, and summability methods, which are related to statistical convergence and their applications. Also we will discuss topological and geometric properties of the sequence spaces, such as the .-property, Banach-Saks prope
16#
發(fā)表于 2025-3-24 10:11:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:57 | 只看該作者
Hemen Dutta,Billy E. RhoadesContains both classical and modern methods in summability theory.Focuses on the basic developments concerning an idea in full details.Integrates theories as well as applications, wherever possible.Inc
18#
發(fā)表于 2025-3-24 18:03:19 | 只看該作者
http://image.papertrans.cn/d/image/241418.jpg
19#
發(fā)表于 2025-3-24 19:59:00 | 只看該作者
20#
發(fā)表于 2025-3-25 00:23:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台前县| 建宁县| 长寿区| 简阳市| 房产| 东莞市| 新源县| 西华县| 合川市| 于都县| 光泽县| 象山县| 古交市| 乌拉特后旗| 灵寿县| 米脂县| 合山市| 北辰区| 盐津县| 镇宁| 綦江县| 石景山区| 庄浪县| 遂川县| 涞水县| 上犹县| 安陆市| 南木林县| 右玉县| 荥经县| 阿荣旗| 五大连池市| 靖宇县| 武威市| 盘山县| 辽宁省| 莲花县| 明溪县| 嘉义市| 苗栗市| 迭部县|