找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Crystallographic Texture and Group Representations; Chi-Sing Man Book 2023 Springer Nature B.V. 2023 Quantitative texture analysis.Orienta

[復制鏈接]
樓主: FETID
41#
發(fā)表于 2025-3-28 14:37:48 | 只看該作者
Crystallographic Texture and Group Representations
42#
發(fā)表于 2025-3-28 19:17:05 | 只看該作者
Crystallographic Texture and Group Representations978-94-024-2158-3
43#
發(fā)表于 2025-3-29 00:38:50 | 只看該作者
Orientation Space for Polycrystals with Crystallite Symmetry,tes, i.e., where .?=?{.} and .?=?{.}.. In Chap. . we follow Roe, who in his two seminal papers [270, 271] shows that the presence of non-trivial sample and/or crystallite symmetries leads to restrictions that the texture coefficients must satisfy.
44#
發(fā)表于 2025-3-29 03:14:26 | 只看該作者
Determination of Texture Coefficients via X-Ray Diffraction,X-ray pole figures, marks the birth of quantitative texture analysis in 1965. Since then, various other methods have been proposed and developed, including the WIMV (Williams–Imhof–Matthies–Vinel) method ([219, 223, 226]; cf. also [170] for an exposition and comments), which is implemented in the Lo
45#
發(fā)表于 2025-3-29 07:55:46 | 只看該作者
The Peter-Weyl Theorem,as a faithful representation. Recall that a representation . of . on complex vector space . is faithful if it is injective. Every matrix group . has a faithful representation as the selfrepresentation . is faithful. In this exposition we are concerned only with matrix groups such as SO(3), O(3), etc
46#
發(fā)表于 2025-3-29 13:10:59 | 只看該作者
47#
發(fā)表于 2025-3-29 19:11:05 | 只看該作者
48#
發(fā)表于 2025-3-29 19:48:23 | 只看該作者
49#
發(fā)表于 2025-3-30 01:43:38 | 只看該作者
Stress and Strain Analysis and Measurement, and not applicable to viscoelastic polymers under all circumstances. By comparing the procedures discussed in later chapters with those of this chapter, it is therefore possible to contrast and evaluate the differences.
50#
發(fā)表于 2025-3-30 07:16:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安溪县| 永丰县| 陇西县| 龙口市| 肇州县| 年辖:市辖区| 双柏县| 永顺县| 乌拉特前旗| 大方县| 盐池县| 西平县| 扎囊县| 横峰县| 城口县| 万全县| 比如县| 石首市| 嵊州市| 湄潭县| 和静县| 东丰县| 灵寿县| 遂宁市| 肃宁县| 浦北县| 天津市| 新干县| 无棣县| 栾城县| 大城县| 台南市| 永顺县| 宜黄县| 松江区| 盐边县| 河曲县| 长子县| 灌阳县| 珲春市| 通河县|