找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Crystallographic Texture and Group Representations; Chi-Sing Man Book 2023 Springer Nature B.V. 2023 Quantitative texture analysis.Orienta

[復(fù)制鏈接]
樓主: FETID
41#
發(fā)表于 2025-3-28 14:37:48 | 只看該作者
Crystallographic Texture and Group Representations
42#
發(fā)表于 2025-3-28 19:17:05 | 只看該作者
Crystallographic Texture and Group Representations978-94-024-2158-3
43#
發(fā)表于 2025-3-29 00:38:50 | 只看該作者
Orientation Space for Polycrystals with Crystallite Symmetry,tes, i.e., where .?=?{.} and .?=?{.}.. In Chap. . we follow Roe, who in his two seminal papers [270, 271] shows that the presence of non-trivial sample and/or crystallite symmetries leads to restrictions that the texture coefficients must satisfy.
44#
發(fā)表于 2025-3-29 03:14:26 | 只看該作者
Determination of Texture Coefficients via X-Ray Diffraction,X-ray pole figures, marks the birth of quantitative texture analysis in 1965. Since then, various other methods have been proposed and developed, including the WIMV (Williams–Imhof–Matthies–Vinel) method ([219, 223, 226]; cf. also [170] for an exposition and comments), which is implemented in the Lo
45#
發(fā)表于 2025-3-29 07:55:46 | 只看該作者
The Peter-Weyl Theorem,as a faithful representation. Recall that a representation . of . on complex vector space . is faithful if it is injective. Every matrix group . has a faithful representation as the selfrepresentation . is faithful. In this exposition we are concerned only with matrix groups such as SO(3), O(3), etc
46#
發(fā)表于 2025-3-29 13:10:59 | 只看該作者
47#
發(fā)表于 2025-3-29 19:11:05 | 只看該作者
48#
發(fā)表于 2025-3-29 19:48:23 | 只看該作者
49#
發(fā)表于 2025-3-30 01:43:38 | 只看該作者
Stress and Strain Analysis and Measurement, and not applicable to viscoelastic polymers under all circumstances. By comparing the procedures discussed in later chapters with those of this chapter, it is therefore possible to contrast and evaluate the differences.
50#
發(fā)表于 2025-3-30 07:16:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾城县| 西林县| 大渡口区| 若尔盖县| 大埔县| 汶上县| 双江| 广平县| 镇江市| 宝山区| 吴忠市| 兴隆县| 长沙县| 惠水县| 宜兴市| 泸西县| 铁岭市| 石阡县| 屏边| 苏尼特右旗| 元阳县| 宁安市| 镇原县| 辽源市| 扎鲁特旗| 常宁市| 天等县| 竹北市| 额尔古纳市| 永寿县| 观塘区| 昌吉市| 延边| 磴口县| 沧州市| 叶城县| 青海省| 图木舒克市| 亚东县| 巴中市| 三亚市|