找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptology and Error Correction; An Algebraic Introdu Lindsay N. Childs Textbook 2019 Springer Nature Switzerland AG 2019 Caeser ciphers.Ch

[復(fù)制鏈接]
樓主: 搖尾乞憐
31#
發(fā)表于 2025-3-26 22:27:24 | 只看該作者
Cryptology and Error Correction978-3-030-15453-0Series ISSN 1867-5506 Series E-ISSN 1867-5514
32#
發(fā)表于 2025-3-27 01:40:28 | 只看該作者
Human Skin Equivalents: When and How to Use, product of rings or of groups. These concepts provide a suitable setting for proofs of the Chinese Remainder Theorem and for the formula satisfied by Euler’s phi function, which counts the number of units of the ring . in terms of the factorization of .. Ideas in this chapter will also be used in some of the analyses in Chaps.?. and ..
33#
發(fā)表于 2025-3-27 05:31:36 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:10 | 只看該作者
35#
發(fā)表于 2025-3-27 15:23:01 | 只看該作者
Polynomials,of degree . with coefficients in a field can have no more than . roots in the field. D’Alembert’s Theorem will become highly useful for explaining Reed-Solomon error correction in Chap.., and for understanding algorithms for factoring large numbers in cryptology. Polynomials will be revisited in Chap.?..
36#
發(fā)表于 2025-3-27 20:29:06 | 只看該作者
,Orders and Euler’s Theorem,h is given a proof using the Binomial Theorem. The final section describes an efficient algorithm for computing a high power of a number modulo .. This algorithm will have both an obvious use in using the cryptosystems presented in Chaps.?. and . and a less obvious use to help construct cryptosystems in the last section of Chap.?..
37#
發(fā)表于 2025-3-27 22:30:54 | 只看該作者
Solving Systems of Congruences,ed up the decryption of messages in an RSA cryptosystem. For the general case of systems of congruences to non-coprime moduli, we show how to decide if solutions exist, and if so, how to find all of the solutions.
38#
發(fā)表于 2025-3-28 04:13:48 | 只看該作者
39#
發(fā)表于 2025-3-28 08:18:42 | 只看該作者
40#
發(fā)表于 2025-3-28 10:33:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝州市| 秀山| 邯郸市| 阳谷县| 左权县| 休宁县| 治多县| 玉环县| 闽侯县| 耿马| 河池市| 高州市| 肇源县| 新竹县| 明星| 内黄县| 长治市| 增城市| 汶上县| 全州县| 隆化县| 衡阳县| 宝山区| 井冈山市| 奈曼旗| 邵武市| 永靖县| 浮山县| 郸城县| 桂林市| 甘洛县| 静安区| 遂昌县| 福州市| 蒙城县| 苏州市| 定襄县| 托克逊县| 凤城市| 湘西| 昌宁县|