找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Lattices; International Confer Joseph H. Silverman Conference proceedings 2001 Springer-Verlag Berlin Heidelberg 2001 Latt

[復制鏈接]
樓主: Insularity
11#
發(fā)表于 2025-3-23 12:06:09 | 只看該作者
Segment LLL-Reduction with Floating Point Orthogonalization,scaled basis can be accurately computed up to dimension 2. by Householder reflexions in floating point arithmetic . with 53 precision bits..We develop a highly practical fpa-variant of the new . . . of Koy and Schnorr [.]. The LLL-steps are guided in this algorithm by the Gram-Schmidt coefficients o
12#
發(fā)表于 2025-3-23 17:06:30 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:49 | 只看該作者
14#
發(fā)表于 2025-3-23 23:01:39 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:08 | 只看該作者
The Shortest Vector Problem in Lattices with Many Cycles,.. We give a proof that the shortest vector problem is NP-complete in the max-norm for .-dimensional lattices . where ?./. has . — 1 cycles. We also give experimental data that show that the LLL algorithm does not perform significantly better on lattices with a high number of cycles.
16#
發(fā)表于 2025-3-24 08:49:46 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:26 | 只看該作者
Segment LLL-Reduction of Lattice Bases,htly weaker notion of reducedness, but speeding up the reduction time of lattices of dimension . by a factor .. We also introduce a variant of LLL-reduction using .. The resulting reduction algorithm runs in . . log. . arithmetic steps for integer lattices of dimension . with basis vectors of length 2..
18#
發(fā)表于 2025-3-24 16:05:12 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:31 | 只看該作者
Multisequence Synthesis over an Integral Domain,mputational complexity is . .) multiplications in . where . is the length of each sequence. A necessary and sufficient conditions for the uniqueness of minimal polynomials are given. The set of all minimal polynomials is also described.
20#
發(fā)表于 2025-3-24 23:19:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
三亚市| 弥渡县| 合山市| 通渭县| 扶余县| 水富县| 克什克腾旗| 巴青县| 濮阳县| 彩票| 泰安市| 桂东县| 龙山县| 江陵县| 鹤壁市| 武义县| 新蔡县| 进贤县| 综艺| 凤庆县| 上林县| 阜南县| 铜山县| 澄城县| 孟津县| 读书| 宜章县| 南和县| 田林县| 英超| 松原市| 绥宁县| 花莲市| 花垣县| 罗定市| 彭山县| 永仁县| 富源县| 太白县| 易门县| 宁强县|