找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Computational Number Theory; Kwok-Yan Lam,Igor Shparlinski,Chaoping Xing Conference proceedings 2001 Springer Basel AG 20

[復制鏈接]
樓主: PEL
31#
發(fā)表于 2025-3-27 00:51:45 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:16 | 只看該作者
Counting the Number of Points on Affine Diagonal CurvesEvans and Williams [1] is to express the number of points in terms of generalized Jacobi sums, then to relate the Jacobi sums .(..,..) to cyclotomic numbers. In this article we present the direct elementary method for the number of points on the affine curves .. + .. = . over finite fields in terms
33#
發(fā)表于 2025-3-27 08:32:32 | 只看該作者
34#
發(fā)表于 2025-3-27 10:13:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:33:05 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:50 | 只看該作者
Algorithms for Generating, Testing and Proving Primes: A Surveyf primality tests of theoretical or practical relevance, the focus is on criteria for practical use..We give a new model for sources producing prime numbers with biased distributions and use it for measuring the security of biases against unknown attacks (adapted solutions to the discrete logarithm
38#
發(fā)表于 2025-3-28 05:12:58 | 只看該作者
The Hermite-Serret Algorithm and 122 + 332uares, given (or having already found) a square root ., say, of -1 modulo n. In brief, one applies the Euclidean algorithm to n and ., stopping at the first pair . and . of remainders that are smaller than . Then, lo! it happens that . = .. + ... Naturally, square roots of -1 properly different from
39#
發(fā)表于 2025-3-28 09:42:34 | 只看該作者
40#
發(fā)表于 2025-3-28 12:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石屏县| 抚州市| 石林| 洮南市| 中牟县| 含山县| 寿光市| 岳西县| 尼勒克县| 桦南县| 西安市| 绥江县| 南京市| 德清县| 新竹县| 咸丰县| 南涧| 吕梁市| 申扎县| 三都| 徐水县| 武宣县| 贺兰县| 赣榆县| 屏南县| 石屏县| 镇坪县| 平谷区| 龙泉市| 山西省| 通海县| 铜川市| 新巴尔虎左旗| 安溪县| 遂宁市| 白水县| 雷波县| 定南县| 京山县| 焦作市| 孟津县|