找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Coding; 14th IMA Internation Martijn Stam Conference proceedings 2013 Springer-Verlag Berlin Heidelberg 2013 cloud cryptog

[復制鏈接]
樓主: 佯攻
51#
發(fā)表于 2025-3-30 11:04:02 | 只看該作者
Kin Chi Lau,Rafael Escobedo,David Barkine one-time public key by a standard signature. Second, we introduce a zero-knowledge variation on the Stern authentication scheme which permits to prove that one or two different syndromes are associated (or not) to the . low weight word. We give a polynomial reduction of the security of our scheme to the security of the syndrome decoding problem.
52#
發(fā)表于 2025-3-30 13:45:19 | 只看該作者
53#
發(fā)表于 2025-3-30 18:49:08 | 只看該作者
Reshma Yousuf,Zawiah Abdul Majidus methods have recommended, while still maintaining reasonable levels of security. As example applications we look at the evaluation of AES via FHE operations presented at Crypto 2012, and the parameters for the SHE variant of BGV used in the SPDZ protocol from Crypto 2012.
54#
發(fā)表于 2025-3-30 20:43:10 | 只看該作者
Semi-bent Functions from Oval Polynomialstwo areas are important from a theoretical point of view and for applications), the connections between finite geometry and cryptography remain little studied. In 2011, Carlet and Mesnager have showed that projective finite geometry can also be useful in constructing significant cryptographic primit
55#
發(fā)表于 2025-3-31 02:04:40 | 只看該作者
56#
發(fā)表于 2025-3-31 06:28:10 | 只看該作者
57#
發(fā)表于 2025-3-31 10:53:33 | 只看該作者
58#
發(fā)表于 2025-3-31 16:00:34 | 只看該作者
59#
發(fā)表于 2025-3-31 17:29:55 | 只看該作者
On Minimal and Quasi-minimal Linear Codesuch codes have applications in cryptography, e.g. to secret sharing. We here study minimal codes, give new bounds and properties and exhibit families of minimal linear codes. We also introduce and study the notion of quasi-minimal linear codes, which is a relaxation of the notion of minimal linear c
60#
發(fā)表于 2025-3-31 23:17:45 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 10:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
福贡县| 前郭尔| 汕尾市| 南澳县| 梁平县| 凤庆县| 邻水| 临西县| 瑞昌市| 微山县| 靖江市| 竹北市| 新龙县| 莱州市| 前郭尔| 分宜县| 绥阳县| 永泰县| 德钦县| 永济市| 定安县| 武平县| 文山县| 朔州市| 恩施市| 泾川县| 木兰县| 新丰县| 万盛区| 疏勒县| 灵丘县| 海城市| 荆门市| 铜川市| 灵璧县| 石首市| 盐源县| 壶关县| 库伦旗| 和龙市| 宜昌市|