找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory for Lagrangian Systems; Marco Mazzucchelli Book 2012 Springer Basel AG 2012 Euler-Lagrange equations.Lagrangian dyna

[復(fù)制鏈接]
查看: 50680|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:17:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Critical Point Theory for Lagrangian Systems
編輯Marco Mazzucchelli
視頻videohttp://file.papertrans.cn/241/240091/240091.mp4
概述Collects, in a rigorous and consistent style, many important results that are sparse in the literature.Exposition is self-contained.Arguments are presented in an elementary way in order to be accessib
叢書名稱Progress in Mathematics
圖書封面Titlebook: Critical Point Theory for Lagrangian Systems;  Marco Mazzucchelli Book 2012 Springer Basel AG 2012 Euler-Lagrange equations.Lagrangian dyna
描述Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigateexistence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
出版日期Book 2012
關(guān)鍵詞Euler-Lagrange equations; Lagrangian dynamics; Morse theory; periodic orbits
版次1
doihttps://doi.org/10.1007/978-3-0348-0163-8
isbn_softcover978-3-0348-0782-1
isbn_ebook978-3-0348-0163-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 2012
The information of publication is updating

書目名稱Critical Point Theory for Lagrangian Systems影響因子(影響力)




書目名稱Critical Point Theory for Lagrangian Systems影響因子(影響力)學(xué)科排名




書目名稱Critical Point Theory for Lagrangian Systems網(wǎng)絡(luò)公開度




書目名稱Critical Point Theory for Lagrangian Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Critical Point Theory for Lagrangian Systems被引頻次




書目名稱Critical Point Theory for Lagrangian Systems被引頻次學(xué)科排名




書目名稱Critical Point Theory for Lagrangian Systems年度引用




書目名稱Critical Point Theory for Lagrangian Systems年度引用學(xué)科排名




書目名稱Critical Point Theory for Lagrangian Systems讀者反饋




書目名稱Critical Point Theory for Lagrangian Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:00 | 只看該作者
Marco MazzucchelliCollects, in a rigorous and consistent style, many important results that are sparse in the literature.Exposition is self-contained.Arguments are presented in an elementary way in order to be accessib
板凳
發(fā)表于 2025-3-22 02:44:33 | 只看該作者
地板
發(fā)表于 2025-3-22 08:19:15 | 只看該作者
5#
發(fā)表于 2025-3-22 12:29:33 | 只看該作者
6#
發(fā)表于 2025-3-22 14:27:02 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:18 | 只看該作者
8#
發(fā)表于 2025-3-22 21:19:47 | 只看該作者
0743-1643 s are presented in an elementary way in order to be accessibLagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynami
9#
發(fā)表于 2025-3-23 03:01:32 | 只看該作者
10#
發(fā)表于 2025-3-23 06:54:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱芜市| 丰镇市| 酒泉市| 大厂| 阳东县| 东辽县| 绵阳市| 叙永县| 拉孜县| 从江县| 容城县| 黔江区| 龙胜| 鹤壁市| 精河县| 石门县| 东辽县| 洱源县| 和顺县| 漳平市| 沙田区| 南丰县| 泸溪县| 梁河县| 广元市| 濮阳市| 邵阳市| 绿春县| 乌鲁木齐县| 连南| 南康市| 增城市| 固镇县| 萍乡市| 宁阳县| 即墨市| 蕲春县| 淅川县| 滨海县| 商都县| 九寨沟县|