找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: risky-drinking
21#
發(fā)表于 2025-3-25 05:46:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:15:49 | 只看該作者
Global Solutions,.?(.). to have a nonempty resolvent. To achieve this, we assumed that .?(.) was periodic in .. This forced us to assume the same for .(., .), and we had to deal with several restrictions in our methods. In this chapter we study the equation without making any periodicity assumptions on the potential
23#
發(fā)表于 2025-3-25 14:23:27 | 只看該作者
24#
發(fā)表于 2025-3-25 15:53:11 | 只看該作者
Nonlinear Optics,on coefficient and the functions are periodic with respect to the variables . Here, . where .?(.) is a continuous, nonnegative function periodic in . Steady state solutions satisfy the following equation over a periodic domain . . where ., . are parameters. The solutions . are to be periodic in Ω wi
25#
發(fā)表于 2025-3-25 21:13:22 | 只看該作者
https://doi.org/10.1007/978-3-030-45603-0Critical point theory; Critical point calculus; Critical point theory applications; Variational methods
26#
發(fā)表于 2025-3-26 02:32:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:26 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:20 | 只看該作者
a .. functional(usually representing the energy) arising from the given data. As an illustration, the equation . is the Euler equation of the functional . on an appropriate space, where . and the norm is that of ... The solving of the Euler equations is tantamount to finding critical points of the
30#
發(fā)表于 2025-3-26 20:02:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼伦贝尔市| 民县| 铜梁县| 东乡族自治县| 周宁县| 西林县| 上饶县| 景泰县| 榆社县| 瓦房店市| 淄博市| 晋江市| 大安市| 镇沅| 绿春县| 江津市| 明星| 永定县| 得荣县| 昆明市| 浦城县| 随州市| 五河县| 临城县| 微山县| 井研县| 中超| 松桃| 太和县| 名山县| 郴州市| 北流市| 工布江达县| 汉中市| 安岳县| 德化县| 荔浦县| 弥渡县| 渭源县| 探索| 广饶县|