找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coxeter Matroids; Alexandre V. Borovik,I. M. Gelfand,Neil White Textbook 20031st edition Birkh?user Boston 2003 Combinatorics.Finite.Latti

[復(fù)制鏈接]
樓主: 無感覺
21#
發(fā)表于 2025-3-25 03:26:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:19:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:50:29 | 只看該作者
Matroids and Semimodular Lattices,ar lattices and seeing how they are related to the symmetric group. We develop a viewpoint of a semimodular lattice as a chamber system with a kind of metric that gives it a structure only slightly weaker than that of a building over .. This leads to a natural way to represent flag matroids in semim
24#
發(fā)表于 2025-3-25 15:55:12 | 只看該作者
Symplectic Matroids,r group, namely, .. the hyperoctahedral group. The resulting structures are called symplectic matroids, and they are in some sense rather general Coxeter matroids, as they include ordinary matroids and a third type, orthogonal matroids, as special cases. This will also prepare us to tackle Coxeter m
25#
發(fā)表于 2025-3-25 20:17:02 | 只看該作者
26#
發(fā)表于 2025-3-26 03:38:17 | 只看該作者
27#
發(fā)表于 2025-3-26 05:36:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:56:04 | 只看該作者
Textbook 20031st editionintuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group...Key topics and features:..* Systematic, clearly written exposition with ample references to current research.* Matroids are examined in terms of sy
29#
發(fā)表于 2025-3-26 15:05:39 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
房产| 龙井市| 福州市| 大姚县| 涿鹿县| 无为县| 通榆县| 吴旗县| 新宾| 镇雄县| 江北区| 垫江县| 杂多县| 顺义区| 荔浦县| 香格里拉县| 凤凰县| 拉萨市| 那曲县| 开封市| 内黄县| 林甸县| 滦平县| 六枝特区| 哈巴河县| 白银市| 英山县| 南昌市| 陇南市| 蒙城县| 丹巴县| 虹口区| 柳州市| 营口市| 儋州市| 丹寨县| 玉田县| 临海市| 淮阳县| 扶沟县| 黔西县|