找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coxeter Matroids; Alexandre V. Borovik,I. M. Gelfand,Neil White Textbook 20031st edition Birkh?user Boston 2003 Combinatorics.Finite.Latti

[復(fù)制鏈接]
樓主: 無感覺
11#
發(fā)表于 2025-3-23 11:44:37 | 只看該作者
Symplectic Matroids,r group, namely, .. the hyperoctahedral group. The resulting structures are called symplectic matroids, and they are in some sense rather general Coxeter matroids, as they include ordinary matroids and a third type, orthogonal matroids, as special cases. This will also prepare us to tackle Coxeter matroids in full generality in the later chapters.
12#
發(fā)表于 2025-3-23 17:10:11 | 只看該作者
Coxeter Matroids,apters 1 and 3. The keystone to the whole theory is the Gelfand—Serganova Theorem which interprets Coxeter matroids as . (Theorem 6.3.1). As we shall soon show (Theorem 6.4.1), the latter can be defined in a very elementary way:
13#
發(fā)表于 2025-3-23 21:07:41 | 只看該作者
Buildings,nvolves permutation of rows and columns of a matrix. The rules these permutations obey are extremely simple; when axiomatized in group-theoretic terms, they become what are known as axioms for a .-pair (or a .) and very quickly lead to Coxeter groups appearing on the scene.
14#
發(fā)表于 2025-3-23 23:31:31 | 只看該作者
Gabriele Siegert,Dieter Brecheishe Maximality Property, which is really just a reformulation of the well-known characterization of matroids in terms of the Greedy Algorithm. It says, briefly, that for every linear ordering of the set of elements of the matroid, there is a unique maximal basis. But linear orderings of a finite set
15#
發(fā)表于 2025-3-24 04:34:38 | 只看該作者
ar lattices and seeing how they are related to the symmetric group. We develop a viewpoint of a semimodular lattice as a chamber system with a kind of metric that gives it a structure only slightly weaker than that of a building over .. This leads to a natural way to represent flag matroids in semim
16#
發(fā)表于 2025-3-24 06:53:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:19:54 | 只看該作者
Wasserkonflikte sind Machtkonfliktematic development of the theory of Coxeter matroids. A . is a finite subgroup of the orthogonal group of ?. generated by some reflections in hyperplanes (. or .). The mirrors cut ?. into open polyhedral cones, called .. The geometric concepts associated with the resulting chamber system (called the
18#
發(fā)表于 2025-3-24 18:29:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:45 | 只看該作者
Wasserkonflikte sind Machtkonfliktenvolves permutation of rows and columns of a matrix. The rules these permutations obey are extremely simple; when axiomatized in group-theoretic terms, they become what are known as axioms for a .-pair (or a .) and very quickly lead to Coxeter groups appearing on the scene.
20#
發(fā)表于 2025-3-25 01:09:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃南| 海阳市| 基隆市| 准格尔旗| 东平县| 寻乌县| 灵丘县| 东阳市| 金湖县| 阿拉善右旗| 宜黄县| 阳泉市| 郁南县| 元江| 阳新县| 行唐县| 南木林县| 黎平县| 苍山县| 张掖市| 庆元县| 泽库县| 山阳县| 新建县| 五大连池市| 荥阳市| 砚山县| 天祝| 项城市| 治多县| 华池县| 陆丰市| 平江县| 加查县| 同仁县| 福鼎市| 云霄县| 准格尔旗| 内江市| 尉氏县| 揭东县|