找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coverings of Discrete Quasiperiodic Sets; Theory and Applicati Peter Kramer,Zorka Papadopolos Book 2003 Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
樓主: 二足動物
11#
發(fā)表于 2025-3-23 11:48:49 | 只看該作者
12#
發(fā)表于 2025-3-23 15:52:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:13:44 | 只看該作者
14#
發(fā)表于 2025-3-24 00:11:13 | 只看該作者
Coverings of Discrete Quasiperiodic Sets978-3-540-45805-0Series ISSN 0081-3869 Series E-ISSN 1615-0430
15#
發(fā)表于 2025-3-24 05:31:24 | 只看該作者
16#
發(fā)表于 2025-3-24 09:38:35 | 只看該作者
or geometric object. The geometric arrangement then generates a pattern with this motif. In ., one allows the overlap of the geometric objects. Any point is still covered by at least one geometric object. Therefore local motifs attached to geometric objects again generate a pattern.
17#
發(fā)表于 2025-3-24 12:53:25 | 只看該作者
cupation number of some of the shells. We show that a fixed extended Bergman cluster of 6 shells and 106 atoms covers about 98% of atomic positions. We also prove that a variable extended Bergman cluster of 6 shells, which contains the previous fixed cluster, covers all atomic positions of the theor
18#
發(fā)表于 2025-3-24 16:21:54 | 只看該作者
sional space, and indeed the decagonal tiling . . can be seen as a subtiling of the icosahedral tiling . . [., .]. The tiles of . . are six golden tetrahedra [., .] of edge lengths ? and . ., as above. The tiles are coded in perpendicular space . by corresponding dual Voronoi boundaries projected on
19#
發(fā)表于 2025-3-24 21:59:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:37:49 | 只看該作者
Covering of Discrete Quasiperiodic Sets: Concepts and Theory, or geometric object. The geometric arrangement then generates a pattern with this motif. In ., one allows the overlap of the geometric objects. Any point is still covered by at least one geometric object. Therefore local motifs attached to geometric objects again generate a pattern.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连平县| 井冈山市| 巴马| 乌海市| 泸水县| 东港市| 炉霍县| 海晏县| 三台县| 昆明市| 太仓市| 浦东新区| 九江市| 宝山区| 平利县| 周口市| 岢岚县| 普格县| 枞阳县| 铜川市| 通河县| 金塔县| 平度市| 凤台县| 蓝田县| 台湾省| 崇州市| 平山县| 固始县| 沂源县| 驻马店市| 南江县| 永昌县| 尼玛县| 德格县| 彝良县| 施秉县| 平乐县| 茶陵县| 德钦县| 苍溪县|