找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covering Walks in Graphs; Futaba Fujie,Ping Zhang Book 2014 Futaba Fujie, Ping Zhang 2014 Hamiltonian graph.spanning walk.traceable number

[復(fù)制鏈接]
查看: 44964|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:22:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Covering Walks in Graphs
編輯Futaba Fujie,Ping Zhang
視頻videohttp://file.papertrans.cn/240/239201/239201.mp4
概述Provides a comprehensive treatment on measures of Hamiltonicity and traversability in graphs.Contains intriguing open problems and conjectures on spanning walks in graphs.Describes new frame works for
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Covering Walks in Graphs;  Futaba Fujie,Ping Zhang Book 2014 Futaba Fujie, Ping Zhang 2014 Hamiltonian graph.spanning walk.traceable number
描述.Covering?Walks ?in Graphs. is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous K?nigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors?provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce inter
出版日期Book 2014
關(guān)鍵詞Hamiltonian graph; spanning walk; traceable number; traversability in graphs; combinatorics
版次1
doihttps://doi.org/10.1007/978-1-4939-0305-4
isbn_softcover978-1-4939-0304-7
isbn_ebook978-1-4939-0305-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightFutaba Fujie, Ping Zhang 2014
The information of publication is updating

書目名稱Covering Walks in Graphs影響因子(影響力)




書目名稱Covering Walks in Graphs影響因子(影響力)學(xué)科排名




書目名稱Covering Walks in Graphs網(wǎng)絡(luò)公開度




書目名稱Covering Walks in Graphs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Covering Walks in Graphs被引頻次




書目名稱Covering Walks in Graphs被引頻次學(xué)科排名




書目名稱Covering Walks in Graphs年度引用




書目名稱Covering Walks in Graphs年度引用學(xué)科排名




書目名稱Covering Walks in Graphs讀者反饋




書目名稱Covering Walks in Graphs讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:48:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:59:22 | 只看該作者
地板
發(fā)表于 2025-3-22 07:36:04 | 只看該作者
5#
發(fā)表于 2025-3-22 09:29:05 | 只看該作者
6#
發(fā)表于 2025-3-22 14:30:29 | 只看該作者
7#
發(fā)表于 2025-3-22 18:08:14 | 只看該作者
Open vertex-covering walks is the subject of this chapter, resulting in the concepts of traceable walks and traceable numbers, defined in terms of the sum of the distances of consecutive terms in an ordering of the vertices of a connected graph. Variations of these numbers are discussed in some detail.
8#
發(fā)表于 2025-3-22 23:46:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:19:33 | 只看該作者
Traceable Walks,Open vertex-covering walks is the subject of this chapter, resulting in the concepts of traceable walks and traceable numbers, defined in terms of the sum of the distances of consecutive terms in an ordering of the vertices of a connected graph. Variations of these numbers are discussed in some detail.
10#
發(fā)表于 2025-3-23 07:56:26 | 只看該作者
Covering Walks in Graphs978-1-4939-0305-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿荣旗| 元氏县| 崇仁县| 连平县| 东兰县| 安乡县| 伊宁县| 诸城市| 新蔡县| 原阳县| 乐亭县| 汉沽区| 静安区| 镇江市| 扎赉特旗| 建始县| 临泉县| 阜阳市| 花莲市| 襄汾县| 长治县| 旅游| 玉龙| 龙州县| 青州市| 通榆县| 临西县| 丰宁| 平湖市| 三河市| 白玉县| 门源| 鹤壁市| 崇左市| 城步| 梅河口市| 息烽县| 额尔古纳市| 长白| 济阳县| 隆尧县|