找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Counterexamples in Topology; Lynn Arthur Steen,J. Arthur Seebach Book 1978Latest edition Springer-Verlag New York Inc. 1978 Compactificati

[復(fù)制鏈接]
查看: 21585|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:25:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Counterexamples in Topology
編輯Lynn Arthur Steen,J. Arthur Seebach
視頻videohttp://file.papertrans.cn/240/239091/239091.mp4
圖書(shū)封面Titlebook: Counterexamples in Topology;  Lynn Arthur Steen,J. Arthur Seebach Book 1978Latest edition Springer-Verlag New York Inc. 1978 Compactificati
描述The creative process of mathematics, both historically and individually, may be described as a counterpoint between theorems and examples. Al- though it would be hazardous to claim that the creation of significant examples is less demanding than the development of theory, we have dis- covered that focusing on examples is a particularly expeditious means of involving undergraduate mathematics students in actual research. Not only are examples more concrete than theorems-and thus more accessible-but they cut across individual theories and make it both appropriate and neces- sary for the student to explore the entire literature in journals as well as texts. Indeed, much of the content of this book was first outlined by under- graduate research teams working with the authors at Saint Olaf College during the summers of 1967 and 1968. In compiling and editing material for this book, both the authors and their undergraduate assistants realized a substantial increment in topologi- cal insight as a direct result of chasing through details of each example. We hope our readers will have a similar experience. Each of the 143 examples in this book provides innumerable concrete illustrations of
出版日期Book 1978Latest edition
關(guān)鍵詞Compactification; Connected space; Separation axiom; Topologie; metrizable; topology
版次2
doihttps://doi.org/10.1007/978-1-4612-6290-9
isbn_softcover978-0-387-90312-5
isbn_ebook978-1-4612-6290-9
copyrightSpringer-Verlag New York Inc. 1978
The information of publication is updating

書(shū)目名稱(chēng)Counterexamples in Topology影響因子(影響力)




書(shū)目名稱(chēng)Counterexamples in Topology影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Counterexamples in Topology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Counterexamples in Topology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Counterexamples in Topology被引頻次




書(shū)目名稱(chēng)Counterexamples in Topology被引頻次學(xué)科排名




書(shū)目名稱(chēng)Counterexamples in Topology年度引用




書(shū)目名稱(chēng)Counterexamples in Topology年度引用學(xué)科排名




書(shū)目名稱(chēng)Counterexamples in Topology讀者反饋




書(shū)目名稱(chēng)Counterexamples in Topology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:24:27 | 只看該作者
地板
發(fā)表于 2025-3-22 08:29:42 | 只看該作者
Compactnessover. This difference between the separation axioms and the various forms of compactness is illustrated in the extreme by the double pointed finite complement topology (Example 18.7) which is not even T. yet does satisfy all the forms of compactness.
5#
發(fā)表于 2025-3-22 10:02:27 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:48 | 只看該作者
Metric Spacess called a .. Although a single metric wall yield a unique topology on a given set, it is possible to find more than one metric which will yield the same topology. In fact, there are always an infinite number of metrics which will yield the same metric space (Example 134).
7#
發(fā)表于 2025-3-22 20:07:59 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:46 | 只看該作者
9#
發(fā)表于 2025-3-23 04:48:21 | 只看該作者
Rainer Danielzyk,Ilse Helbrecht3 of Axiom 1 of [82] a Moore space. Each metric space is a Moore space, but not conversely, so the search for a metrization theorem became that of determining precisely which Moore spaces are metrizable. The most famous conjecture was that each normal Moore space is metrizable.
10#
發(fā)表于 2025-3-23 07:53:01 | 只看該作者
Conjectures and Counterexamples3 of Axiom 1 of [82] a Moore space. Each metric space is a Moore space, but not conversely, so the search for a metrization theorem became that of determining precisely which Moore spaces are metrizable. The most famous conjecture was that each normal Moore space is metrizable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
纳雍县| 武隆县| 中阳县| 抚远县| 石嘴山市| 会昌县| 阳新县| 石景山区| 永新县| 应城市| 宜宾市| 柘城县| 湛江市| 封开县| 洪泽县| 宁武县| 阿拉善右旗| 中卫市| 理塘县| 方城县| 伊春市| 前郭尔| 甘泉县| 彭州市| 漠河县| 阿克苏市| 崇阳县| 延长县| 德化县| 额敏县| 黄浦区| 申扎县| 万载县| 景泰县| 长沙县| 波密县| 清河县| 栖霞市| 桂东县| 本溪| 门源|