找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counterexamples in Operator Theory; Mohammed Hichem Mortad Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 猛烈抨擊
31#
發(fā)表于 2025-3-26 23:14:14 | 只看該作者
(Square) Roots of Bounded OperatorsLet .?∈?.(.). We say that .?∈?.(.) is a square root of . if ..?=?..
32#
發(fā)表于 2025-3-27 01:59:52 | 只看該作者
33#
發(fā)表于 2025-3-27 06:39:48 | 只看該作者
SpectrumLet .?∈?.(.) where . is a complex Hilbert space. The set . is called the spectrum of ..
34#
發(fā)表于 2025-3-27 10:26:30 | 只看該作者
Spectral Radius, Numerical RangeLet . be in .(.). The spectral radius of . is defined as
35#
發(fā)表于 2025-3-27 14:09:24 | 只看該作者
Functional CalculiThe functional calculus aims to define .(.) where . is a fixed operator, and . belongs to some classes of functions defined in domains containing .(.), say. We already know that this is possible for any polynomial .. We also know how to define the exponential of . at an undergraduate level (this will be recalled in Chap. .).
36#
發(fā)表于 2025-3-27 21:46:12 | 只看該作者
37#
發(fā)表于 2025-3-27 23:17:32 | 只看該作者
38#
發(fā)表于 2025-3-28 05:56:46 | 只看該作者
Similarity and Unitary EquivalenceClearly, . and . have the same eigenvalues which, in this setting, means that . and . have equal spectra. To see why . and . are not unitarily equivalent, remember that two unitarily equivalent operators are simultaneously (e.g.) self-adjoint. Since . is self-adjoint and . is not, it follows that they cannot be unitarily equivalent.
39#
發(fā)表于 2025-3-28 08:06:15 | 只看該作者
The Sylvester EquationConsider the operator equation: . where ., ., .?∈?.(.) are given and .?∈?.(.) is the unknown. This equation is more commonly known as the Sylvester equation.
40#
發(fā)表于 2025-3-28 11:29:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虹口区| 固始县| 修水县| 彝良县| 韶关市| 岳阳县| 凤台县| 两当县| 兴文县| 阳原县| 锦屏县| 双流县| 晋城| 登封市| 英超| 漳州市| 新宾| 开阳县| 屯留县| 灌云县| 轮台县| 文水县| 邵武市| 隆安县| 南木林县| 霞浦县| 稻城县| 广平县| 栾川县| 平舆县| 贵州省| 肃宁县| 大悟县| 巴南区| 兴业县| 德格县| 乐山市| 墨竹工卡县| 海晏县| 张家口市| 柘城县|