找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counterexamples in Operator Theory; Mohammed Hichem Mortad Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 猛烈抨擊
31#
發(fā)表于 2025-3-26 23:14:14 | 只看該作者
(Square) Roots of Bounded OperatorsLet .?∈?.(.). We say that .?∈?.(.) is a square root of . if ..?=?..
32#
發(fā)表于 2025-3-27 01:59:52 | 只看該作者
33#
發(fā)表于 2025-3-27 06:39:48 | 只看該作者
SpectrumLet .?∈?.(.) where . is a complex Hilbert space. The set . is called the spectrum of ..
34#
發(fā)表于 2025-3-27 10:26:30 | 只看該作者
Spectral Radius, Numerical RangeLet . be in .(.). The spectral radius of . is defined as
35#
發(fā)表于 2025-3-27 14:09:24 | 只看該作者
Functional CalculiThe functional calculus aims to define .(.) where . is a fixed operator, and . belongs to some classes of functions defined in domains containing .(.), say. We already know that this is possible for any polynomial .. We also know how to define the exponential of . at an undergraduate level (this will be recalled in Chap. .).
36#
發(fā)表于 2025-3-27 21:46:12 | 只看該作者
37#
發(fā)表于 2025-3-27 23:17:32 | 只看該作者
38#
發(fā)表于 2025-3-28 05:56:46 | 只看該作者
Similarity and Unitary EquivalenceClearly, . and . have the same eigenvalues which, in this setting, means that . and . have equal spectra. To see why . and . are not unitarily equivalent, remember that two unitarily equivalent operators are simultaneously (e.g.) self-adjoint. Since . is self-adjoint and . is not, it follows that they cannot be unitarily equivalent.
39#
發(fā)表于 2025-3-28 08:06:15 | 只看該作者
The Sylvester EquationConsider the operator equation: . where ., ., .?∈?.(.) are given and .?∈?.(.) is the unknown. This equation is more commonly known as the Sylvester equation.
40#
發(fā)表于 2025-3-28 11:29:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 南澳县| 长子县| 成都市| 凤山市| 衡阳县| 临猗县| 南部县| 闻喜县| 周口市| 永平县| 万荣县| 桦甸市| 丰城市| 桃江县| 田林县| 习水县| 八宿县| 凌云县| 通海县| 思茅市| 石门县| 射阳县| 图木舒克市| 唐河县| 庆元县| 巨鹿县| 化州市| 新巴尔虎右旗| 衡东县| 唐山市| 万山特区| 天台县| 察隅县| 且末县| 塔河县| 淳安县| 中江县| 留坝县| 赤水市| 万宁市|