找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cosserat Theories: Shells, Rods and Points; M. B. Rubin Book 2000 Springer Science+Business Media Dordrecht 2000 continuum mechanics.devel

[復(fù)制鏈接]
樓主: 銀河
21#
發(fā)表于 2025-3-25 05:55:26 | 只看該作者
Cosserat Rods,e in many applications. For example, the main supporting structures in buildings, and the connecting bars in trusses can be modeled as beams, whereas the curved reinforcement ribs of airplane wings and submarines, and the double helix of DNA molecules can be modeled as rods.
22#
發(fā)表于 2025-3-25 08:36:35 | 只看該作者
Introduction,entum are used to determine the present values of the mass density and this position vector. Also, the balance of angular momentum is used to place restrictions on the constitutive equations of the continuum (i.e. the symmetry of the stress tensor).
23#
發(fā)表于 2025-3-25 13:08:54 | 只看該作者
24#
發(fā)表于 2025-3-25 16:22:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:34:33 | 只看該作者
Introduction,ocation of each material point as a function of time. For the purely mechanical theory, the laws of conservation of mass and the balance of linear momentum are used to determine the present values of the mass density and this position vector. Also, the balance of angular momentum is used to place re
26#
發(fā)表于 2025-3-26 01:58:47 | 只看該作者
Basic Tensor Operations in Curvilinear Coordinates, observed in the physical world. Almost always it is necessary to describe the location of a material point in space relative to some fixed point and relative to some specified fixed axes. The specific choice of these axes remains arbitrary but it is usually guided by desire to simplify some aspect
27#
發(fā)表于 2025-3-26 06:06:48 | 只看該作者
Cosserat Shells,dy that is considered to be “thin” in one of its dimensions (see Fig. 4.1.1). In particular, the shell is characterized by its major surfaces (bottom and top) and its lateral surface. From another point of view, the shell is considered to be a material surface S which has some finite thickness bound
28#
發(fā)表于 2025-3-26 09:39:07 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:41:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
儋州市| 龙江县| 鄄城县| 达日县| 蓬莱市| 云梦县| 翼城县| 含山县| 民勤县| 南康市| 山阴县| 万宁市| 桓仁| 南平市| 高雄市| 枣阳市| 新沂市| 越西县| 惠来县| 洛浦县| 孝昌县| 晋宁县| 阳泉市| 海宁市| 师宗县| 道真| 阿拉善盟| 县级市| 旅游| 江阴市| 开封市| 内黄县| 会同县| 台江县| 司法| 林周县| 榆中县| 岐山县| 甘泉县| 彝良县| 类乌齐县|