找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Correlation Equations; For Statistical Comp Aristarkh Konstantinovich Mitropol’skii Book 1966 Springer Science+Business Media New York 1966

[復(fù)制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 12:54:11 | 只看該作者
Wear Prediction on Total Ankle ReplacementTo investigate the relationships among several random variables, one sets up multiple correlation equations. As for ordinary correlation equations, Chebyshev’s method is a very convenient way of setting up multiple correlation equations.
12#
發(fā)表于 2025-3-23 16:11:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:23 | 只看該作者
14#
發(fā)表于 2025-3-23 23:17:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:28:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:00 | 只看該作者
Distribution Surfaces,The final goal in investigating relationships between random variables is the establishment of the equation of the corresponding distribution surface. Here, we shall consider the normal distribution surface, and its generalization — the type A distribution surface.
17#
發(fā)表于 2025-3-24 12:16:43 | 只看該作者
http://image.papertrans.cn/c/image/238764.jpg
18#
發(fā)表于 2025-3-24 14:50:09 | 只看該作者
Water Politics and Political Cultureationship is that of correlation among random variables, expressible by correlation equations. Correlation equations make it possible to compute the so-called probable value of one random variable as a function of the individual values of other random variables.
19#
發(fā)表于 2025-3-24 19:22:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:29 | 只看該作者
Sanela Dursun Ph.D.,Julie Coulthard Ph.D.hose cases when the character of the relationship understudy is as yet unknown. By using Chebyshev’s method, we may determine the order of the correlation equation providing the best fit to the graph of the observed relationship between the variables.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌市| 游戏| 得荣县| 汤原县| 重庆市| 富蕴县| 灵川县| 庆云县| 商都县| 临澧县| 泽库县| 河西区| 武平县| 黎平县| 文登市| 江安县| 彩票| 墨竹工卡县| 安达市| 基隆市| 宜兰县| 余庆县| 昭通市| 黑水县| 南充市| 合江县| 沅江市| 西丰县| 甘泉县| 肇庆市| 六安市| 武清区| 大新县| 和龙市| 陇南市| 鹤岗市| 陕西省| 长沙县| 司法| 宿迁市| 澄城县|