找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Correlation Equations; For Statistical Comp Aristarkh Konstantinovich Mitropol’skii Book 1966 Springer Science+Business Media New York 1966

[復(fù)制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 12:54:11 | 只看該作者
Wear Prediction on Total Ankle ReplacementTo investigate the relationships among several random variables, one sets up multiple correlation equations. As for ordinary correlation equations, Chebyshev’s method is a very convenient way of setting up multiple correlation equations.
12#
發(fā)表于 2025-3-23 16:11:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:23 | 只看該作者
14#
發(fā)表于 2025-3-23 23:17:38 | 只看該作者
15#
發(fā)表于 2025-3-24 03:28:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:00 | 只看該作者
Distribution Surfaces,The final goal in investigating relationships between random variables is the establishment of the equation of the corresponding distribution surface. Here, we shall consider the normal distribution surface, and its generalization — the type A distribution surface.
17#
發(fā)表于 2025-3-24 12:16:43 | 只看該作者
http://image.papertrans.cn/c/image/238764.jpg
18#
發(fā)表于 2025-3-24 14:50:09 | 只看該作者
Water Politics and Political Cultureationship is that of correlation among random variables, expressible by correlation equations. Correlation equations make it possible to compute the so-called probable value of one random variable as a function of the individual values of other random variables.
19#
發(fā)表于 2025-3-24 19:22:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:29 | 只看該作者
Sanela Dursun Ph.D.,Julie Coulthard Ph.D.hose cases when the character of the relationship understudy is as yet unknown. By using Chebyshev’s method, we may determine the order of the correlation equation providing the best fit to the graph of the observed relationship between the variables.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 连南| 股票| 宜春市| 宜川县| 南通市| 邓州市| 英德市| 兴隆县| 永顺县| 台北市| 明光市| 剑河县| 江源县| 南部县| 桂平市| 浮山县| 阿克苏市| 三门峡市| 历史| 乐平市| 定结县| 金昌市| 迁安市| 宁阳县| 横峰县| 宜君县| 麟游县| 新田县| 中山市| 高邮市| 北海市| 吴江市| 祁连县| 昌平区| 翁牛特旗| 开封市| 泰安市| 固安县| 含山县| 浙江省|