找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Core Data Analysis: Summarization, Correlation, and Visualization; Boris Mirkin Textbook 2019Latest edition Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 53709|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:06:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Core Data Analysis: Summarization, Correlation, and Visualization
編輯Boris Mirkin
視頻videohttp://file.papertrans.cn/239/238235/238235.mp4
概述Focuses on the encoder-decoder interpretation of summarization methods, such as Principal Component Analysis and K-means clustering.Supplies an in-depth description of K-means partitioning including a
叢書名稱Undergraduate Topics in Computer Science
圖書封面Titlebook: Core Data Analysis: Summarization, Correlation, and Visualization;  Boris Mirkin Textbook 2019Latest edition Springer Nature Switzerland AG
描述.This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank. .Features:.·??????? An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter. .·??????? Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc..·??????? Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and cons
出版日期Textbook 2019Latest edition
關(guān)鍵詞Clustering; Data Analysis; K-means; Principal component analysis; Visualization; data structures
版次2
doihttps://doi.org/10.1007/978-3-030-00271-8
isbn_softcover978-3-030-00270-1
isbn_ebook978-3-030-00271-8Series ISSN 1863-7310 Series E-ISSN 2197-1781
issn_series 1863-7310
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Core Data Analysis: Summarization, Correlation, and Visualization影響因子(影響力)




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization影響因子(影響力)學(xué)科排名




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization網(wǎng)絡(luò)公開度




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization被引頻次




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization被引頻次學(xué)科排名




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization年度引用




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization年度引用學(xué)科排名




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization讀者反饋




書目名稱Core Data Analysis: Summarization, Correlation, and Visualization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:25:53 | 只看該作者
Sebastian Henn,S?ren Koch,Gerhard W?scherpresenting target categories. Some related concepts such as Bayesian decision rules, bag-of-word model in text analysis, VC-dimension and kernel for non-linear classification are introduced too. The Chapter outlines several important characteristics of summarization and correlation between two featu
板凳
發(fā)表于 2025-3-22 01:24:03 | 只看該作者
地板
發(fā)表于 2025-3-22 07:13:27 | 只看該作者
Sebastian Henn,S?ren Koch,Gerhard W?scherand clusters. Spectral clustering gained popularity with the so-called Normalized Cut approach to divisive clustering. A relaxation of this combinatorial problem appears to be equivalent to optimizing the Rayleigh quotient for a Laplacian transformation of the similarity matrix under consideration.
5#
發(fā)表于 2025-3-22 09:25:40 | 只看該作者
6#
發(fā)表于 2025-3-22 15:53:50 | 只看該作者
7#
發(fā)表于 2025-3-22 17:43:01 | 只看該作者
Core Partitioning: K-means and Similarity Clustering,d to yield what we call the complementary criterion. This criterion allows to reinterpret the method as that for finding big anomalous clusters. In this formulation, K-means is shown to extend the Principal component analysis criterion to the case at which the scoring factors are supposed to be bina
8#
發(fā)表于 2025-3-23 00:29:08 | 只看該作者
Divisive and Separate Cluster Structures,and clusters. Spectral clustering gained popularity with the so-called Normalized Cut approach to divisive clustering. A relaxation of this combinatorial problem appears to be equivalent to optimizing the Rayleigh quotient for a Laplacian transformation of the similarity matrix under consideration.
9#
發(fā)表于 2025-3-23 02:42:01 | 只看該作者
10#
發(fā)表于 2025-3-23 08:28:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南靖县| 绵竹市| 淳安县| 彰化县| 宜州市| 正阳县| 商南县| 措美县| 嘉义县| 璧山县| 益阳市| 始兴县| 海盐县| 页游| 德惠市| 通城县| 滕州市| 辉南县| 兰坪| 武宁县| 福海县| 万源市| 繁峙县| 平乡县| 南昌市| 永平县| 前郭尔| 宝山区| 蕲春县| 穆棱市| 虞城县| 手机| 上杭县| 确山县| 鄯善县| 奉节县| 邵阳县| 布尔津县| 富阳市| 奈曼旗| 得荣县|