找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cooperative Coordination and Formation Control for Multi-agent Systems; Zhiyong Sun Book 2018 Springer International Publishing AG 2018 Co

[復(fù)制鏈接]
樓主: Concave
31#
發(fā)表于 2025-3-26 23:22:51 | 只看該作者
32#
發(fā)表于 2025-3-27 04:55:51 | 只看該作者
Springer Theseshttp://image.papertrans.cn/c/image/237939.jpg
33#
發(fā)表于 2025-3-27 06:10:29 | 只看該作者
34#
發(fā)表于 2025-3-27 13:31:37 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:24 | 只看該作者
36#
發(fā)表于 2025-3-27 21:28:31 | 只看該作者
Distributed Stabilization Control of Rigid Formations with Prescribed Orientationsbal coordinate knowledge or any coordinate frame alignment to implement the proposed control. The exponential convergence to the desired rigid shape and formation orientation is also proved. Typical simulation examples are shown to support the analysis and performance of the proposed formation controllers.
37#
發(fā)表于 2025-3-28 00:08:27 | 只看該作者
Clifford S. Russell,Christopher D. Clarkes will be strictly bounded away from the set of degenerate formations at any finite or infinite time. These results are obtained from a joint analysis of rank-preserving flow theory, graph rigidity theory and invariant manifold theory.
38#
發(fā)表于 2025-3-28 02:34:37 | 只看該作者
,Zuf?lligkeitsprüfung/Stichprobenprüfung,roblems, models, and issues, Springer Science & Business Media, New York, .). In this chapter we review some recent progress in the field of networked systems and distributed control, in particular in the area of distributed formation shape control.
39#
發(fā)表于 2025-3-28 07:24:33 | 只看該作者
Water Quality Management in Mexico, included in a unified framework. We then extend the result to the case that the target formation is non-minimally rigid, and show that exponential stability of the formation system is still guaranteed with generalized controllers.
40#
發(fā)表于 2025-3-28 12:08:06 | 只看該作者
Chemische und tribologische Eigenschaftenm motions, and derive certain motion parameter formulas to describe the rigid formation movements by employing the angular momentum concept from classical mechanics. Finally, we explain how the idea can be used for steering a rigid formation to move as a rigid body.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延津县| 巢湖市| 绍兴市| 贺州市| 奉化市| 通化市| 资中县| 临清市| 双流县| 绥江县| 滁州市| 易门县| 苍溪县| 隆昌县| 天台县| 涿鹿县| 南木林县| 广南县| 大悟县| 台山市| 赣州市| 兴国县| 昌吉市| 洛南县| 濉溪县| 拉孜县| 江陵县| 洮南市| 海南省| 五原县| 遂溪县| 昭平县| 德昌县| 彩票| 巴里| 江孜县| 广元市| 德庆县| 防城港市| 涟源市| 平塘县|