找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convolution Equations and Singular Integral Operators; Selected Papers Leonid Lerer,Vadim Olshevsky,Ilya M. Spitkovsky Book 2010 Birkh?user

[復(fù)制鏈接]
樓主: Goiter
21#
發(fā)表于 2025-3-25 06:47:32 | 只看該作者
Matrix Integral Operators on a Finite Interval with Kernels Depending on the Difference of the ArguBy ..(0, τ) (1≤ . ≤ ∞, 0 < τ < ∞) denote the Banach space of the vector functions . = {.., .., ..., ..} with entries .. ∈ ..(0, τ) and the norm
22#
發(fā)表于 2025-3-25 11:24:33 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:46:19 | 只看該作者
The Spectrum of Singular Integral Operators in ,, Spaces,First, we shall consider the simplest class of one-dimensional singular integral operators — the class of discrete Wiener-Hopf operators.
25#
發(fā)表于 2025-3-25 19:58:07 | 只看該作者
On an Algebra Generated by the Toeplitz Matrices in the Spaces ,,,Let .. (1<.<∞) be the Banach Hardy space of all functions ?(ζ) that are analytic inside the circle |ζ|=1 with the norm
26#
發(fā)表于 2025-3-26 01:21:44 | 只看該作者
27#
發(fā)表于 2025-3-26 08:11:03 | 只看該作者
28#
發(fā)表于 2025-3-26 09:16:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:49:41 | 只看該作者
One-dimensional Singular Integral Operators with Shift,Let Г be a closed or open oriented Lyapunov arc and ω(.) be a bijective mapping of Г onto itself. An operator of the form . is usually called a . ω(.). Here .(.), .(.), .(.), and .(.) are bounded measurable functions on Г, . is the operator of singular integration along Г given by . and . is the shift operator defined by
30#
發(fā)表于 2025-3-26 19:46:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平顺县| 兴国县| 高阳县| 英山县| 五寨县| 江西省| 合阳县| 团风县| 台东县| 且末县| 宜阳县| 武鸣县| 二连浩特市| 呼伦贝尔市| 浪卡子县| 德格县| 新丰县| 樟树市| 临漳县| 隆安县| 炎陵县| 牙克石市| 迁安市| 新安县| 定日县| 伊通| 颍上县| 黄大仙区| 庆城县| 武冈市| 仙游县| 南雄市| 通辽市| 珲春市| 通河县| 朔州市| 南宁市| 娄烦县| 彩票| 绥棱县| 碌曲县|