找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Its Applications; Peter M. Gruber,J?rg M. Wills Book 1983 Springer Basel AG 1983 optimization.research.science and technolog

[復(fù)制鏈接]
樓主: 烤問
41#
發(fā)表于 2025-3-28 17:12:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:26:33 | 只看該作者
http://image.papertrans.cn/c/image/237860.jpg
43#
發(fā)表于 2025-3-29 02:01:46 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:33 | 只看該作者
45#
發(fā)表于 2025-3-29 11:03:16 | 只看該作者
Algebraic Lattices,kerkerker [6]. As none of these sources deals specifically with lattices other than those of Minkowski-type (i.e. a ?-module with N generators in ?.) it seems worthwhile to trace the main developments there for lattices which have more algebraic structure. Even though these are often endowed with ar
46#
發(fā)表于 2025-3-29 13:09:01 | 只看該作者
47#
發(fā)表于 2025-3-29 15:47:06 | 只看該作者
Convexity Through the Ages, and all chords of which lie on the same side of it. Analogously he defines a convex surface bounded by a plane curve. His determination of arc lengths is based on certain postulates. One of these is: If one of two convex arcs with common endpoints lies between the other and the line joining the end
48#
發(fā)表于 2025-3-29 20:08:41 | 只看該作者
Approximation of convex bodies,t. On the one hand approximation is used as a tool for investigations ranging from classical results on mixed volumes to questions concerning the ε-entropy of spaces of convex bodies, on the other hand there is an intrinsic geometric interest in the approximation problem itself.
49#
發(fā)表于 2025-3-30 02:29:59 | 只看該作者
50#
發(fā)表于 2025-3-30 07:46:17 | 只看該作者
Valuations on convex bodies, of geometric convexity, and it has seen some progress in recent years. The occurrence of valuations in the theory of convex bodies can be traced back to the notion of volume in two essentially different ways. Firstly, the volume of convex bodies, being the restriction of a measure, is itself a valu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石泉县| 通州市| 白河县| 手游| 咸宁市| 绥中县| 海南省| 清涧县| 翼城县| 昌宁县| 林周县| 石嘴山市| 崇义县| 三原县| 渭源县| 军事| 会东县| 恩平市| 阿坝| 杭锦后旗| 普兰店市| 黔江区| 南漳县| 舞钢市| 太白县| 濉溪县| 晋中市| 中西区| 元江| 台前县| 西乌珠穆沁旗| 阳泉市| 华宁县| 博爱县| 中西区| 鲁甸县| 平谷区| 顺平县| 武定县| 天水市| 陵川县|