找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex and Starlike Mappings in Several Complex Variables; Sheng Gong Book 1998 Springer Science+Business Media Dordrecht 1998 Convexity.D

[復(fù)制鏈接]
樓主: Racket
11#
發(fā)表于 2025-3-23 09:55:56 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:55 | 只看該作者
13#
發(fā)表于 2025-3-23 20:19:06 | 只看該作者
The geometrical properties for holomorphic convex mappings on the unit ball,The purpose of this chapter is to consider some geometrical properties of holomorphic convex mappings on the unit ball.
14#
發(fā)表于 2025-3-23 23:35:42 | 只看該作者
The distortion theorem for holomorphic convex and starlike mappings, theorems as determinant distortion theorems. In this chapter, we will give the concrete form of the determinant distortion theorem for holomorphic convex and starlike mappings on bounded symmetric domains.
15#
發(fā)表于 2025-3-24 05:29:43 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:25 | 只看該作者
978-94-010-6191-9Springer Science+Business Media Dordrecht 1998
17#
發(fā)表于 2025-3-24 11:17:27 | 只看該作者
Neuere Aspekte der Krebsentstehungspect to .. if for any point . ∈ . (Ω), the line segment joining .. and . lies in . (Ω). A convex mapping is a starlike mapping. Actually, we may define a convex mapping as a mapping that is starlike with respect to any interior point of . (Ω). In this book, we usually assume that . (0) = 0 and that
18#
發(fā)表于 2025-3-24 17:28:04 | 只看該作者
Supraleitung in der Nachrichtentechnik, theorems as determinant distortion theorems. In this chapter, we will give the concrete form of the determinant distortion theorem for holomorphic convex and starlike mappings on bounded symmetric domains.
19#
發(fā)表于 2025-3-24 21:24:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:11 | 只看該作者
Supraleitung in der Nachrichtentechnik, theorems as determinant distortion theorems. In this chapter, we will give the concrete form of the determinant distortion theorem for holomorphic convex and starlike mappings on bounded symmetric domains.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿图什市| 武宁县| 淅川县| 景洪市| 宜黄县| 临泽县| 嘉定区| 山西省| 太仓市| 武川县| 托里县| 江北区| 邵阳市| 济南市| 赤峰市| 嘉鱼县| 东海县| 张家界市| 封开县| 大兴区| 涪陵区| 大渡口区| 汾西县| 博乐市| 临清市| 浙江省| 安远县| 曲靖市| 乌拉特后旗| 行唐县| 淮滨县| 女性| 江北区| 九寨沟县| 宁化县| 遂川县| 江北区| 始兴县| 安阳县| 威远县| 山阳县|