找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Polyhedra with Regularity Conditions and Hilbert’s Third Problem; A. R. Rajwade Book 2001 Hindustan Book Agency (India) 2001

[復制鏈接]
樓主: Bush
21#
發(fā)表于 2025-3-25 06:28:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:51:30 | 只看該作者
Vortices in Bose-Einstein CondensatesPolyhedra are three-dimensional analogues of polygons. Thus a polyhedron is a solid figure (or the surface of such a solid figure) with a finite number of plane polygonal faces, straight edges and vertices. Commonest instances of polyhedra are the pyramids (figure 1.1 (a),(b)) and the prisms (figure 1.1(c),(d)).
23#
發(fā)表于 2025-3-25 14:49:37 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:20 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:19 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:09 | 只看該作者
https://doi.org/10.1007/978-0-8176-4550-2In chapter 9, we gave a quick proof for the finiteness of the number of RFP. However, one has an enormous number of possibilities, with varied n-gons, that have to be discarded as non-existent (see table 9.1 with row numbers four, ten, and sixteen terminating respectively at the eleventh, twenty-ninth and forty-oneth place).
27#
發(fā)表于 2025-3-26 07:44:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:49:27 | 只看該作者
Theorems of Euler and Descartes,In addition to the two theorems of the title we need two easy results in the sequel, which we shall dispose off first.
29#
發(fā)表于 2025-3-26 15:12:15 | 只看該作者
The fourteen Bodies of Archimedes,We next come to the convex semi-regular polyhedra satisfying (I.) and (IV.). Plato is said to have known one of these, the cuboctahedron. This and twelve others are usually ascribed to Archimedes, though his book on them is lost. Five of these thirteen polyhedra were rediscovered by Piero della Francesca (1416–1492).
30#
發(fā)表于 2025-3-26 20:44:48 | 只看該作者
Finiteness of the number of convex Regular Faced Polyhedra (RFP) and the remaining cases of regularIn this chapter, we consider polyhedra II satisfying the regularity condition (I.), i.e. polyhedra whose faces are regular polygons with no further restrictions imposed on II. This leads to one of the most beautiful and difficult results in this topic. Polyhedra satisfying this regularity condition (I.) are termed . and abbreviated to ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
托克托县| 河东区| 绥阳县| 寿阳县| 延吉市| 无为县| 行唐县| 城口县| 义乌市| 福泉市| 南陵县| 吴忠市| 金川县| 栖霞市| 静宁县| 德安县| 彰化市| 义乌市| 甘洛县| 阿克苏市| 顺昌县| 平昌县| 海淀区| 遂昌县| 新兴县| 沂水县| 临桂县| 扶风县| 额济纳旗| 柳江县| 射洪县| 云龙县| 哈巴河县| 和龙市| 农安县| 澄迈县| 崇州市| 临桂县| 吴川市| 阳春市| 醴陵市|