找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Polyhedra; ?A.D. Alexandrov Book 2005 Springer-Verlag Berlin Heidelberg 2005 Dimension.Finite.convex polyhedra.geometry.rigidity.th

[復(fù)制鏈接]
查看: 10168|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:15:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Convex Polyhedra
編輯?A.D. Alexandrov
視頻videohttp://file.papertrans.cn/238/237848/237848.mp4
概述The classic book on the topic.Includes supplementary material:
叢書(shū)名稱Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Convex Polyhedra;  ?A.D. Alexandrov Book 2005 Springer-Verlag Berlin Heidelberg 2005 Dimension.Finite.convex polyhedra.geometry.rigidity.th
描述.Convex Polyhedra is one of the classics in geometry. There simply is no other book with so many of the aspects of the theory of 3-dimensional convex polyhedra in a comparable way, and in anywhere near its detail and completeness. It is the definitive source of the classical field of convex polyhedra and contains the available answers to the question of the data uniquely determining a convex polyhedron. This question concerns all data pertinent to a polyhedron, e.g. the lengths of edges, areas of faces, etc. This vital and clearly written book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. It is a wonderful source of ideas for students. ..The English edition includes numerous comments as well as added material and a comprehensive bibliography by V.A. Zalgaller to bring the work up to date. Moreover, related papers by L.A.Shor and Yu.A.Volkov have been added as supplements to this book..
出版日期Book 2005
關(guān)鍵詞Dimension; Finite; convex polyhedra; geometry; rigidity; theorem
版次1
doihttps://doi.org/10.1007/b137434
isbn_softcover978-3-642-06215-5
isbn_ebook978-3-540-26340-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書(shū)目名稱Convex Polyhedra影響因子(影響力)




書(shū)目名稱Convex Polyhedra影響因子(影響力)學(xué)科排名




書(shū)目名稱Convex Polyhedra網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Convex Polyhedra網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Convex Polyhedra被引頻次




書(shū)目名稱Convex Polyhedra被引頻次學(xué)科排名




書(shū)目名稱Convex Polyhedra年度引用




書(shū)目名稱Convex Polyhedra年度引用學(xué)科排名




書(shū)目名稱Convex Polyhedra讀者反饋




書(shū)目名稱Convex Polyhedra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:44:02 | 只看該作者
Book 2005s. ..The English edition includes numerous comments as well as added material and a comprehensive bibliography by V.A. Zalgaller to bring the work up to date. Moreover, related papers by L.A.Shor and Yu.A.Volkov have been added as supplements to this book..
板凳
發(fā)表于 2025-3-22 03:19:30 | 只看該作者
地板
發(fā)表于 2025-3-22 07:05:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:29:31 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/c/image/237848.jpg
6#
發(fā)表于 2025-3-22 15:28:09 | 只看該作者
Convex Polyhedra978-3-540-26340-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
7#
發(fā)表于 2025-3-22 18:50:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:10:20 | 只看該作者
978-3-642-06215-5Springer-Verlag Berlin Heidelberg 2005
9#
發(fā)表于 2025-3-23 03:19:38 | 只看該作者
1439-7382 and a comprehensive bibliography by V.A. Zalgaller to bring the work up to date. Moreover, related papers by L.A.Shor and Yu.A.Volkov have been added as supplements to this book..978-3-642-06215-5978-3-540-26340-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
10#
發(fā)表于 2025-3-23 07:12:31 | 只看該作者
Basic Concepts and Simplest Properties of Convex Polyhedra,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆安县| 密云县| 怀仁县| 稷山县| 新疆| 鹤山市| 正宁县| 怀宁县| 白河县| 建德市| 淄博市| 龙川县| 博白县| 泽州县| 塘沽区| 策勒县| 广南县| 阆中市| 城固县| 得荣县| 卫辉市| 宿迁市| 酒泉市| 望江县| 红桥区| 鹤峰县| 临漳县| 连平县| 贞丰县| 克山县| 都江堰市| 高台县| 兴安盟| 武定县| 扎兰屯市| 铅山县| 嵩明县| 灌阳县| 舞钢市| 甘肃省| 梧州市|