找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
11#
發(fā)表于 2025-3-23 11:15:32 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1this class of problems, an objective function is assumed to be convex but a set of admissible points is not necessarily convex. Our goal is to obtain an .-approximate solution in the presence of computational errors, where . is a given positive number.
12#
發(fā)表于 2025-3-23 16:22:02 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:44 | 只看該作者
Springer Optimization and Its Applicationshttp://image.papertrans.cn/c/image/237847.jpg
14#
發(fā)表于 2025-3-23 22:30:23 | 只看該作者
https://doi.org/10.1007/978-94-007-5934-3In this chapter we analyze the mirror descent algorithm for minimization of convex and nonsmooth functions and for computing the saddle points of convex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points.
15#
發(fā)表于 2025-3-24 02:28:44 | 只看該作者
16#
發(fā)表于 2025-3-24 08:20:43 | 只看該作者
17#
發(fā)表于 2025-3-24 10:43:14 | 只看該作者
18#
發(fā)表于 2025-3-24 18:20:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:29 | 只看該作者
Minimization of Sharp Weakly Convex Functions,In this chapter we study the subgradient projection algorithm for minimization of sharp weakly convex functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points.
20#
發(fā)表于 2025-3-25 02:13:40 | 只看該作者
https://doi.org/10.1007/978-3-030-37822-6convex optimization; mathematical programming; computational error; nonlinear analysis; solving real-wor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南平市| 青阳县| 通江县| 宁明县| 璧山县| 玛多县| 定安县| 兴海县| 潮州市| 同仁县| 临安市| 武鸣县| 台北县| 沽源县| 巴东县| 江门市| 田东县| 灵山县| 陆丰市| 郁南县| 平和县| 吉林市| 海兴县| 柏乡县| 汾阳市| 沛县| 饶阳县| 轮台县| 罗平县| 建水县| 卢氏县| 张北县| 兴宁市| 达拉特旗| 云南省| 东港市| 格尔木市| 奉新县| 香格里拉县| 广昌县| 千阳县|