找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Birkh?user Verlag 1998 Topology.convex integration.differential geom

[復(fù)制鏈接]
查看: 7647|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:54:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Convex Integration Theory
副標(biāo)題Solutions to the h-p
編輯David Spring
視頻videohttp://file.papertrans.cn/238/237845/237845.mp4
概述Comprehensive and systematic monograph on convex integration theory.Indispensable to all interested in differential topology, symplectic topology and optimal control theory.Addresses as well as resear
叢書名稱Modern Birkh?user Classics
圖書封面Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Birkh?user Verlag 1998 Topology.convex integration.differential geom
描述§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equati
出版日期Book 1998
關(guān)鍵詞Topology; convex integration; differential geometry; equation; function; geometry; hull extensions; manifol
版次1
doihttps://doi.org/10.1007/978-3-0348-0060-0
isbn_softcover978-3-0348-0059-4
isbn_ebook978-3-0348-0060-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightBirkh?user Verlag 1998
The information of publication is updating

書目名稱Convex Integration Theory影響因子(影響力)




書目名稱Convex Integration Theory影響因子(影響力)學(xué)科排名




書目名稱Convex Integration Theory網(wǎng)絡(luò)公開度




書目名稱Convex Integration Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convex Integration Theory被引頻次




書目名稱Convex Integration Theory被引頻次學(xué)科排名




書目名稱Convex Integration Theory年度引用




書目名稱Convex Integration Theory年度引用學(xué)科排名




書目名稱Convex Integration Theory讀者反饋




書目名稱Convex Integration Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:17 | 只看該作者
Convex Integration Theory978-3-0348-0060-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
地板
發(fā)表于 2025-3-22 06:45:42 | 只看該作者
5#
發(fā)表于 2025-3-22 08:42:41 | 只看該作者
6#
發(fā)表于 2025-3-22 16:38:11 | 只看該作者
7#
發(fā)表于 2025-3-22 18:45:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:28:58 | 只看該作者
2197-1803 e, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equati978-3-0348-0059-4978-3-0348-0060-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
9#
發(fā)表于 2025-3-23 01:26:18 | 只看該作者
10#
發(fā)表于 2025-3-23 07:41:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘荣县| 中江县| 思茅市| 平远县| 宁强县| 静乐县| 盐源县| 阿巴嘎旗| 镇雄县| 和田市| 和顺县| 澎湖县| 永定县| 桃园县| 尉氏县| 顺昌县| 康马县| 阳江市| 贡觉县| 嵊泗县| 大新县| 柳林县| 驻马店市| 丰宁| 托克逊县| 滕州市| 垫江县| 天台县| 常熟市| 兴山县| 惠安县| 高密市| 都安| 阜平县| 青冈县| 天镇县| 莫力| 汝州市| 文水县| 民勤县| 瑞丽市|