找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe

[復(fù)制鏈接]
查看: 26936|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:27:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Convex Integration Theory
副標(biāo)題Solutions to the h-p
編輯David Spring
視頻videohttp://file.papertrans.cn/238/237844/237844.mp4
叢書名稱Monographs in Mathematics
圖書封面Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe
描述§1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov‘s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par- tial di
出版日期Book 1998
關(guān)鍵詞Differential topology; Manifold; Topology; differential geometry; equation; function; geometry; theorem
版次1
doihttps://doi.org/10.1007/978-3-0348-8940-7
isbn_softcover978-3-0348-9836-2
isbn_ebook978-3-0348-8940-7Series ISSN 1017-0480 Series E-ISSN 2296-4886
issn_series 1017-0480
copyrightSpringer Basel AG 1998
The information of publication is updating

書目名稱Convex Integration Theory影響因子(影響力)




書目名稱Convex Integration Theory影響因子(影響力)學(xué)科排名




書目名稱Convex Integration Theory網(wǎng)絡(luò)公開度




書目名稱Convex Integration Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convex Integration Theory被引頻次




書目名稱Convex Integration Theory被引頻次學(xué)科排名




書目名稱Convex Integration Theory年度引用




書目名稱Convex Integration Theory年度引用學(xué)科排名




書目名稱Convex Integration Theory讀者反饋




書目名稱Convex Integration Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:41:42 | 只看該作者
地板
發(fā)表于 2025-3-22 04:46:10 | 只看該作者
Systems of Partial Differential Equations,for which . ≤ .? 1 (more unknown functions than equations) and are non-linear. Generically determined systems and all linear systems are systematically . i.e. these important systems are beyond the scope of the results and methods of this chapter
5#
發(fā)表于 2025-3-22 12:15:06 | 只看該作者
Wilfried Roetzel,Bernhard Spangce of .-structures is itself a contractible space. Employing the lemma, one is able to glue together local .-structures in a neighbourhood of each point . ∈ . to obtain a global .-structure over ., with respect to which one constructs the map . in the above Riemann integral.
6#
發(fā)表于 2025-3-22 13:12:22 | 只看該作者
Camilla M. Whittington,Katherine Belovfor which . ≤ .? 1 (more unknown functions than equations) and are non-linear. Generically determined systems and all linear systems are systematically . i.e. these important systems are beyond the scope of the results and methods of this chapter
7#
發(fā)表于 2025-3-22 19:03:08 | 只看該作者
8#
發(fā)表于 2025-3-22 21:14:25 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:02 | 只看該作者
10#
發(fā)表于 2025-3-23 09:17:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五台县| 疏勒县| 冀州市| 博湖县| 闽清县| 金湖县| 留坝县| 昭觉县| 永嘉县| 三穗县| 榆中县| 陈巴尔虎旗| 林周县| 任丘市| 宝应县| 墨竹工卡县| 华亭县| 呼伦贝尔市| 邢台市| 富裕县| 余姚市| 汝南县| 陇南市| 海淀区| 当涂县| 孟津县| 澄迈县| 兴仁县| 水富县| 崇义县| 临泉县| 新昌县| 云林县| 黄陵县| 保靖县| 博爱县| 江门市| 公安县| 永安市| 河西区| 基隆市|