找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations; Simon Markfelder Book 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 38045|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:42:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations
編輯Simon Markfelder
視頻videohttp://file.papertrans.cn/238/237843/237843.mp4
概述Provides a genuinely compressible convex integration approach.Surveys most results achieved by convex integration.Explains the essentials of hyperbolic conservation laws
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations;  Simon Markfelder Book 2021 The Editor(s) (if applicable)
描述This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis–Székelyhidi approach to the setting of compressible Euler equations..The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial bounda
出版日期Book 2021
關(guān)鍵詞Admissible Weak Solutions; Barotropic Euler Equations; Barotropic Euler System; Compressible Euler Equa
版次1
doihttps://doi.org/10.1007/978-3-030-83785-3
isbn_softcover978-3-030-83784-6
isbn_ebook978-3-030-83785-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations影響因子(影響力)




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations影響因子(影響力)學(xué)科排名




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations網(wǎng)絡(luò)公開度




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations被引頻次




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations被引頻次學(xué)科排名




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations年度引用




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations年度引用學(xué)科排名




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations讀者反饋




書目名稱Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:44:28 | 只看該作者
Hyperbolic Conservation Lawsompressible Euler systems (.), (.) and (.)–(.) are particular examples of hyperbolic conservation laws. In this chapter we deal with hyperbolic conservation laws in general. More details can be found in textbooks, e.g. by Dafermos [.].
板凳
發(fā)表于 2025-3-22 01:19:04 | 只看該作者
地板
發(fā)表于 2025-3-22 05:33:01 | 只看該作者
5#
發(fā)表于 2025-3-22 10:30:06 | 只看該作者
6#
發(fā)表于 2025-3-22 13:32:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:57 | 只看該作者
8#
發(fā)表于 2025-3-22 22:54:53 | 只看該作者
Hyperbolic Conservation Lawsompressible Euler systems (.), (.) and (.)–(.) are particular examples of hyperbolic conservation laws. In this chapter we deal with hyperbolic conservation laws in general. More details can be found in textbooks, e.g. by Dafermos [.].
9#
發(fā)表于 2025-3-23 04:04:07 | 只看該作者
Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations978-3-030-83785-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
10#
發(fā)表于 2025-3-23 08:20:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麦盖提县| 萨迦县| 丹棱县| 淮安市| 宣武区| 高青县| 永善县| 大田县| 鄯善县| 花莲县| 开远市| 二连浩特市| 武穴市| 桂东县| 磐安县| 台东县| 醴陵市| 竹溪县| 巴彦淖尔市| 贺兰县| 连州市| 高碑店市| 贵州省| 上犹县| 湘西| 石狮市| 衡山县| 龙胜| 北宁市| 鹤峰县| 巴楚县| 常熟市| 蕉岭县| 城固县| 连云港市| 仙桃市| 曲阜市| 双桥区| 寿宁县| 舞阳县| 禄丰县|