找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Functions, Monotone Operators and Differentiability; Robert R. Phelps Book 19891st edition Springer-Verlag Berlin Heidelberg 1989 b

[復制鏈接]
21#
發(fā)表于 2025-3-25 07:16:42 | 只看該作者
A smooth variational principle and more about Asplund spaces,l in proving Borwein’s Theorem 3.17, which in turn provided a unified approach to a sequence of fundamental results. As shown in Ekeland’s survey article [Ek], it has found application in such diverse areas as fixed-point theorems, nonlinear semigroups, optimization, mathematical programming, contro
22#
發(fā)表于 2025-3-25 10:32:10 | 只看該作者
23#
發(fā)表于 2025-3-25 11:51:28 | 只看該作者
Notes and Remarks,er of the notes. Flett’s book [Fl] is frequently useful when one needs to verify fundamental questions concerning differentiability and Roberts-Varberg [R-V] is a good source for basic elementary facts about convex functions. Rademacher’s theorem (stated as Theorem 1.18) has been extended in various
24#
發(fā)表于 2025-3-25 16:32:44 | 只看該作者
Friedensbemühungen w?hrend des Kriegesly wide range of connections between the RNP and various parts of integration theory, operator theory and convexity, one should read the 1977 survey by Diestel and Uhl [Di-U] and, for more recent results (1983) the comprehensive lecture notes by Bourgin [Bou].
25#
發(fā)表于 2025-3-25 23:26:24 | 只看該作者
26#
發(fā)表于 2025-3-26 03:07:06 | 只看該作者
27#
發(fā)表于 2025-3-26 08:08:18 | 只看該作者
28#
發(fā)表于 2025-3-26 10:00:25 | 只看該作者
A smooth variational principle and more about Asplund spaces,cle [Ek], it has found application in such diverse areas as fixed-point theorems, nonlinear semigroups, optimization, mathematical programming, control theory and global analysis. Recall the statement:
29#
發(fā)表于 2025-3-26 13:34:41 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
抚远县| 台北市| 榆树市| 永定县| 新营市| 南阳市| 内丘县| 遂川县| 营山县| 固安县| 樟树市| 济宁市| 宾阳县| 衡阳市| 鹤壁市| 涟源市| 宝鸡市| 高密市| 崇明县| 无棣县| 淅川县| 呼伦贝尔市| 株洲县| 基隆市| 大足县| 北碚区| 喀喇沁旗| 观塘区| 沁水县| 文化| 黄浦区| 朝阳区| 修武县| 会理县| 当涂县| 南昌县| 江永县| 深圳市| 宁波市| 霍林郭勒市| 华容县|